Fünfmal so reißfest wie Stahl und dreimal so fest wie die derzeit besten synthetischen Fasern: Spinnenseide ist ein faszinierendes Material. Doch niemand kann bisher die Super-Fäden technisch herstellen. Wie schafft es die Spinne, aus den im Inneren der Spinndrüse gespeicherten Spinnenseidenproteinen in Sekundenbruchteilen lange, hochstabile und elastische Fäden zu ziehen? Diesem Geheimnis sind jetzt deutsche Forscher auf die Spur gekommen. Sie stellen die Ergebnisse ihrer neuen Studie im Wissenschaftsjournal „Nature“ vor.
„Die hohe Elastizität und extreme Reißfestigkeit der natürlichen Spinnenseide erreichen selbst Fasern aus reinem Spinnenseiden-Protein bisher nicht“, erklärt Professor Horst Kessler vom Institute for Advanced Study der Technischen Universität München (TUM-IAS).
Auf dem Weg zu künstlicher Spinnenseide
Daher ist eine Schlüsselfrage bei der künstlichen Herstellung stabiler Spinnenseide-Fäden: Wie schafft es die Spinne, das Rohmaterial in der Spinndrüse in hoher Konzentration bereit zu halten und bei Bedarf in Bruchteilen einer Sekunde daraus einen reißfesten Faden zu ziehen? Professor Thomas Scheibel von der Universität Bayreuth untersucht bereits seit einigen Jahren den rätselhaften Spinnvorgang.
Spinnenfäden bestehen aus Eiweißmolekülen, langen Ketten, die aus Tausenden von Aminosäure-Bausteinen aufgebaut sind. Röntgenstreuungsexperimente zeigen, dass sich im fertigen Faden Bereiche befinden, in denen mehrere Eiweißketten über stabile physikalische Bindungen miteinander vernetzt sind. Sie bewirken die Stabilität. Dazwischen befinden sich unvernetzte Bereiche, sie sind für die hohe Elastizität verantwortlich.
Seiden-Proteine warten auf ihren Einsatz
In der Spinndrüse herrschen ganz andere Verhältnisse: In einer wässrigen Umgebung lagern hier die Seiden-Proteine in hoher Konzentration und warten auf ihren Einsatz. Die für die festen Quervernetzungen verantwortlichen Bereiche dürfen sich dabei nicht zu nahe kommen, da sonst die Eiweiße augenblicklich verklumpen würden. Es musste also eine Art Speicherform dieser Moleküle geben.
Die sonst so erfolgreiche Röntgenstrukturanalyse konnte zur Aufklärung nichts beitragen, da sie nur Kristalle analysieren kann. Bis zu dem Moment, an dem der feste Faden entsteht, spielt sich jedoch alles in Lösung ab. Die Untersuchungsmethode der Wahl war daher die Kernmagnetische Resonanz-Spektroskopie (NMR). An den Geräten des Bayerischen NMR-Zentrums gelang es dem Biochemiker Franz Hagn aus Kesslers Team, die Struktur eines Regulationselements aufzuklären, das für die Bildung des festen Fadens verantwortlich ist. Zusammen mit Lukas Eisoldt und John Hardy aus Scheibels Gruppe konnte darüber hinaus die Wirkungsweise dieses Regulationselements aufgeklärt werden.
Vernetzung unterbunden
„Unter den Speicherbedingungen in der Spinndrüse sind immer zwei dieser Regulationsbereiche so miteinander verknüpft, dass die quervernetzenden Bereiche beider Ketten nicht parallel zueinander liegen können“, erläutert Scheibel die Ergebnisse. „Die Vernetzung ist damit wirkungsvoll unterbunden.“ Die Eiweißketten lagern sich dann so zusammen, dass polare Bereiche außen sind und die Wasser abweisenden Teile der Kette innen. Dies stellt die gute Löslichkeit in der wässrigen Umgebung sicher.
Gelangen die so geschützten Proteine nun in den Spinnkanal, finden sie dort eine völlig andere Salzkonzentration und -zusammensetzung vor. Die beiden Salzbrücken der Regulatordomäne werden dadurch instabil und die Kette kann sich entfalten. Durch die Strömung im engen Spinnkanal treten zudem starke Scherkräfte auf. Die langen Eiweißketten werden parallel zueinander ausgerichtet, und nun liegen auch die für die Quervernetzung verantwortlichen Bereiche direkt nebeneinander. Ein stabiler Spinnenseidenfaden entsteht, so die Forscher.
Molekularer Schalter mit großer Bedeutung
„Unsere Ergebnisse haben gezeigt, dass der von uns entdeckte molekulare Schalter am C-terminalen Ende der Eiweißkette sowohl für die sichere Lagerung als auch für den Faserbildungsprozess von entscheidender Bedeutung ist“, sagt Hagn. Eine wichtige Grundlage für diese Ergebnisse schuf eine Kooperation des Scheibel-Teams mit dem von Professor Andreas Bausch am Physik-Department der TUM. Dort wurde ein künstlicher Spinnkanal in Mikrosystemtechnologie entwickelt.
Aufbauend auf diesen Erkenntnissen arbeiten die Bayreuther Wissenschaftler inzwischen im Rahmen eines BMBF-Projekts zusammen mit Industrieunternehmen mit Hochdruck an der Entwicklung eines biomimetischen Spinnapparates. Anwendungen gäbe es viele, vom resorbierbaren Nahtmaterial für Operationen bis hin zu technischen Fasern für den Automobilbereich.
(Technische Universität München, 14.05.2010 – DLO)