Forscher haben den ersten Röntgenlaser konstruiert, bei dem Atome die energiereichen Strahlen abgeben. Ein Gas aus Neonatomen erzeugt dabei ultrakurze Röntgenblitze mit extrem geringer Streuung. Ein einzelner Blitz dauert nur rund fünf Femtosekunden – dies entspricht fünf Billiardstel Sekunden. Das Besondere an dem neuen Röntgenlaser ist die hohe Farbreinheit seines Röntgenlichts: Es besteht aus Strahlung in einem ganz engen Ausschnitt des Wellenlängen-Spektrums. Diese Reinheit ermögliche es, Nanostrukturen und Nanoprozesse genauer abzubilden zu als bisher möglich. Im Vergleich zu herkömmlichen Röntgenlasern sei der atomare Röntgenlaser rund 60 Mal schärfer, berichten die Forscher im Fachmagazin „Nature“.
Röntgenlaser ähneln herkömmlichen Lasern darin, dass sie Strahlen erzeugen, deren Wellen quasi im gleichen Takt schwingen. Während normale Laser jedoch Licht im sichtbaren oder infraroten Wellenbereich aussenden, erzeugen Röntgenlaser das sehr viel kurzwelligere und energiereichere Röntgenlicht. Je kürzer die Wellenlänge des emittierten Lichts ist, desto kleinere Objekte können damit noch trennscharf beobachtet und abgebildet werden.
Besonders scharfe Bilder aus der Nanowelt
Wie die Forscher berichten, erzeugt der neue atomare Röntgenlaser ein Licht mit der Wellenlänge von nur 1,46 Nanometern. Diese extrem kurze Wellenlänge reicht daher aus, um selbst kleine Moleküle und sogar Atome abbilden zu können. Das Licht des neuen Lasers schwanke dabei nur um ein Viertausendstel um seine Grundwellenlänge, schreiben Nina Rohringer vom Center for Free-Electron Laser Science (CFEL) in Hamburg und ihre US-amerikanischen Kollegen. Dadurch könne er besonders scharfe Bilder aus der Nanowelt liefern.
Weil der atomare Röntgenlaser zudem viele ultrakurze Röntgenpulse schnell hintereinander abfeuern kann, lassen sich mit ihm auch extrem schnelle Prozesse, beispielsweise bei chemischen Reaktionen, abfilmen. Die Röntgenblitze erzeugen dabei eine Serie von Schnappschüssen, die später wie ein Daumenkino zu einem Film zusammengesetzt werden können.