Es gibt kein Entkommen: Was einmal in den großen Wirbeln des Ozeans gefangen ist, kommt nicht mehr hinaus. Denn eine Barriere aus kreisendem Wasser grenzt die Wirbel so scharf von ihrer Umgebung ab, dass sie wie ein Schwarzes Loch wirken. Das hat ein Forscherteam zur eigenen Überraschung festgestellt, als die Grenzen dieser Wirbelmonster der Meere mathematisch zu bestimmen versuchte.
Die weltumspannenden Meeresströmungen prägen die Ozeane und unser Klima. Zusätzlich aber existieren auch riesige Meereswirbel mit mehr als 150 Kilometern Durchmesser. Die Zahl solcher Wirbel in südlichen Ozeanen nimmt zu, dadurch erhöht sich der Transport von warmem und salzigem Wasser nach Norden. Dies könnte das Klima auch bei uns entscheidend beeinflussen.
Bisher konnten Wissenschaftler diese Wirkung der Wirbel jedoch nicht genau messen, da sie die Grenzen der rotierenden Wassermassen nicht bestimmen konnten. Durch ihre gleichzeitig rotierende und driftende Bewegung erscheinen sie für einen Beobachter chaotisch. George Haller von der ETH Zürich, und Francisco Beron-Vera von der University of Miami haben nun eine Lösung für dieses Problem gefunden. Sie stellen eine neue mathematische Methode vor, mit der sich wassertransportierende Meereswirbel mit klarer Umgrenzung erkennen lassen.
Kein Entkommen aus dem Sog
Dabei stellten die Forscher zu ihrem Erstaunen fest, dass solche fest zusammenhängenden Wirbel mathematisch Schwarzen Löchern ähneln. Diese besitzen eine so große Masse, dass sie alles anziehen, was sich ihnen auf eine bestimmte Distanz nähert. Nicht einmal Licht kann ihnen entkommen, wenn es in ihren Wirkungsbereich gerät. Aber es gibt einen Sonderfall: Wenn ein Lichtstrahl ein Schwarzes Loch in einem bestimmten Abstand streift, wird er durch dessen Schwerkraft so stark gebogen, dass er sich zu einem kreisförmigen Orbit schließt. Eine Barriereoberfläche, zusammengesetzt aus solch geschlossenen Lichtringen, wird in Einsteins Relativitätstheorie als Photonsphäre bezeichnet.