Es klingt ziemlich abenteuerlich: Nach Ansicht zweier Physiker könnte die Raumzeit eine Art Superflüssigkeit sein. Ähnlich wie das Verhalten des Wassers durch seine Molekül-Interaktionen geprägt wird, wäre dann die Raumzeit durch Effekte ihrer Quantenbausteine geprägt. Sie bildet dadurch ein fast reibungsloses Superfluid. Der Clou an diesem Szenario der Quantengravitation: Es könnte sich zukünftig sogar experimentell überprüfen lassen.
Nach der Theorie der Quantengravitation ist die Raumzeit keine kontinuierliche Matrix, sondern diskret: Auf der kleinsten Ebene ist sie in einzelne Einheiten von minimal 10 hoch -35 Metern aufgeteilt, die eine Art Quantenschaum bilden. Dieses Konstrukt soll ein Problem der Quantenmechanik lösen helfen: Bisher lassen sich nur drei der vier Grundkräfte durch Quanteneffekt plausibel erklären. Die vierte Grundkraft, die Gravitation, aber nicht.
Im Rahmen der Quantengravitation gibt es zwar inzwischen viele Modelle, die genau dies versuchen. Doch das Problem dabei: Ihre Szenarien sind entweder unvollständig oder aber sie lassen sich nicht empirisch belegen. „Das Entstehen der klassischen Raumzeit aus einem Quantengravitations-Modell ist immer noch ein subtiles und nur teilweise verstandenes Thema“, erklären Stefano Liberati von der International School for Advanced Studies (SISSA) in Triest und Luca Maccione von der Ludwig-Maximilian Universität in München.
Hydrodynamik in kosmischem Maßstab
Sie haben nun ein Modell entwickelt, das auf den ersten Blick absurd klingt, aber erste Möglichkeiten einer Überprüfung bieten könnte. Ihr Szenario: Die Raumzeit könnte sich – quantenphysikalisch betrachtet – wie eine Flüssigkeit verhalten. Die Gesetzmäßigkeiten der Allgemeinen Relativität wären dann Ergebnis der Eigenschaften dieser Superflüssigkeit – analog der Hydrodynamik, die das Verhalten von Flüssigkeiten auf makroskopischer Ebene beschreibt.