Quantencomputer in der Hosentasche? Eine neue Architektur für Quantensysteme soll es ermöglichen, Quantencomputer ähnlich zu miniaturisieren, wie das auch bei klassischen Computerchips gelang. Wissenschaftler schlagen dazu ein neues System aus in Diamant eingebetteten Stickstoffatomen vor. Ein tatsächlicher Computer nach diesem Prinzip liegt zwar noch in ferner Zukunft, schreiben die Forscher im Fachmagazin „Physical Review X“, aber das neue Modell soll entscheidend zur Massenproduktion solcher Rechenmaschinen beitragen.
Quantencomputer ist so etwas wie der Heilige Gral der Quantentechnologie – bereits seit Jahrzehnten arbeiten Wissenschaftler daran, quantenmechanische Systeme für logische Berechnungen zu verwenden. Derartige Computer wären bisherigen Rechnern um ein Vielfaches überlegen, wenn zahlreiche Rechenoperationen in möglichst kurzer Zeit zu bewältigen sind: „Ein Bit in einem gewöhnlichen Computer kann immer nur entweder den Wert null oder eins annehmen“, erklärt Jörg Schmiedmayer von der Technischen Universität Wien. „In der Quantenphysik sind allerdings Überlagerungen verschiedener Zustände erlaubt – ein Quanten-Bit (QBit) kann sich daher im Zustand null und gleichzeitig im Zustand eins befinden, wodurch sich fantastische Rechenkapazitäten ergeben würden.“
Quantencomputer brauchen Fehlerkorrektur
Praktisch umsetzen kann man solche Überlagerungszustände mit unterschiedlichen Systemen – etwa mit Ionen, die man in elektromagnetischen Fallen festhält oder mit supraleitenden QBits. Schmiedmayer und seine Kollegen schlagen nun eine neue Architektur für solche Quantensysteme vor: In einem hauchdünnen Diamantplättchen wird an mehreren Stellen jeweils ein einzelnes Stickstoff-Atom eingebaut, dessen Spin verschiedene Zustände annehmen kann. Jedes Stickstoffatom zwischen zwei Spiegeln gewissermaßen eingesperrt. Über Glasfaserleitungen lässt sich dieses Quantensystem aus Spiegeln und Diamant durch Lichtsignale manipulieren.
Jedes einzelne dieser Systeme aus Spiegeln, Diamant und eingebautem Stickstoff-Atom kann ein QBit an Information tragen – also null, eins, oder eine beliebige Überlagerung davon. Doch ein solches QBit ist extrem instabil. Um die Information zuverlässig zu verarbeiten, sind spezielle Quantenfehlerkorrektur-Verfahren nötig. „Verwendet man Fehlerkorrekturen, kommt man beim Speichern eines Quanten-Bits nicht mehr in einem einzelnen Quantenteilchen aus“, sagt Michael Trupke von der Technischen Universität Wien, „man braucht eine komplizierte Architektur aus vielen miteinander verbundenen Systemen.“