Plasma statt Magnete: Ein neuartiger Plasmabeschleuniger könnte riesige Teilchenbeschleuniger künftig überflüssig machen – zumindest wenn es um Elektronen geht. Denn eine nur wenige Meter lange Plasmakammer und ein Protonenstrahl reichen aus, um die Elektronen bis auf mehrere Gigaelektronenvolt zu beschleunigen. Das demonstriert ein erster Test des sogenannten Advanced Wakefield Experiments (AWAKE) am CERN, über den Forscher im Fachmagazin „Nature“ berichten.
Teilchenbeschleuniger gehören zu den wichtigsten Werkzeugen der modernen Physik. Ihnen verdanken wir die Entdeckung von Elementarteilchen wie dem Higgs-Boson oder den exotischen Tetraquarks, aber auch Einblicke in die Grundkräfte der Physik oder den Zustand des Universums direkt nach dem Urknall. Bisher jedoch haben diese Beschleuniger einen Nachteil: Sie sind riesig und ihre als Tempomacher eingesetzten Elektromagnete verschlingen ungeheure Mengen Energie.
Kielwellen im Plasma
Schon länger suchen Physiker daher nach Methoden, Elektronen oder Protonen mit effektiveren Techniken auf Touren zu bringen. Zu diesen gehören Beschleuniger, die mit Terahertz-Strahlung arbeiten, aber auch Anlagen nach dem Prinzip der sogenannten Kielfeld-Beschleunigung (Plasma Wakefield Acceleration). Bei diesen werden kurze Laserpulse durch einen engen Kanal mit Plasma geschossen. Dies löst Elektronen aus dem Plasma und erzeugt ein kielwellenförmiges elektrisches Feld, das sie beschleunigt.
Bei diesen Plasmabeschleunigern reichen wenige Zentimeter Strecke aus, um Elektronen bis in den Gigaelektronenvolt-Bereich zu beschleunigen. Um jedoch noch höhere Energien oder weitere Flugstrecken zu erreichen, müssten mehrere dieser Anlagen hintereinander gekoppelt werden. „Die erzeugten Kielwellen sind zu schwach für einen effektiven Teilchentransport über längere Distanz“, erklärt Koautor Patrick Muggli vom Max-Planck-Institut für Physik.