Einem deutsch-italienischen Forscherteam ist es gelungen, verlässliche Nanomuster einer so genannten Spinübergangsverbindung auf Siliziumoxid- Chips herzustellen. Solche „nanostrukturierten Speicherdomänen“ sind ein entscheidender Schritt auf dem Weg zu molekularen Speichermedien, bei denen binäre Daten durch das Umschalten von Elektronenspins gespeichert werden. Die Studie ist in der Zeitschrift Angewandte Chemie erschienen.
Derzeitige Computerfestplatten speichern Daten, indem die Oberfläche einer rotierenden Scheibe magnetisiert wird. Jede Speicherzelle hat eine „Adresse“, so dass direkt auf die gespeicherten Daten zugegriffen werden kann. Um die Speicherkapazität zu erhöhen, werden die einzelnen magnetisierbaren Bereiche immer kleiner gemacht. Allerdings ist das Limit bald erreicht. Durch thermische Anregung kippen gelegentlich einige der magnetischen Partikel in die andere Richtung. Bei sehr kleinen Domänen kann die ganze Zelle rasch ihre Magnetisierung verlieren. Die gespeicherte Information geht dann verloren.
Spin als Alternative?
Um noch größere Informationsdichten zu erzielen, kann man auch auf andere schaltbare Stoffeigenschaften umsteigen, beispielsweise den Übergang zwischen zwei Spinzuständen. So können Eisen(II)- Verbindungen in einem hohen und einem niedrigen Spinzustand vorliegen. Das „Umschalten“ (Flip) zwischen diesen beiden Zuständen kann durch Temperatur, Druck und elektromagnetische Strahlung ausgelöst werden.
Für einen Datenspeicher werden aber nicht nur zwei unterscheidbare Zustände für 0 und 1 gebraucht, sondern auch eine eindeutige „Adresse“ für jede Speicherzelle, die von den optischen Schreibund Leseeinheiten des Computers identifiziert werden kann. Dafür ist ein Interface notwendig, das die nanoskopischen Spinzustandsübergänge der molekularen Schalteinheiten mit der mikroskaligen Geräteumgebung in Einklang bringt. Dies kann gelingen, wenn die Spinübergangsverbindung in eine hochgeordnete Mikro- und Nanostruktur gebracht werden kann.