Der 25. Februar 2013 war für Hauke Müntinga vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen ein besonderer Tag seiner wissenschaftlichen Laufbahn. Seine Publikation, in der er und seine Kollegen aus dem QUANTUS-Team zum ersten Mal die Interferenz von Bose-Einstein-Kondensaten unter Schwerelosigkeit nachweisen konnten, erschien nun in der höchst renommierten Zeitschrift „Physical Review Letters (PRL)“.
Als im Rahmen des QUANTUS-Projektes (Quantengase unter Schwerelosigkeit) das erste Bose-Einstein-Kondensat in der Schwerelosigkeit erzeugt werden konnte, wurde dieser Erfolg mit einem Artikel in der sehr renommierten Zeitschrift „Science“ gekrönt. Die Gutachter der American Physical Society waren sich bei der aktuellen Veröffentlichung einig, dass diese einen großen Fortschritt auf dem Gebiet der Atom-Interferometrie bedeutet. Sie liefert nämlich zum ersten Mal den Nachweis, dass BECs unter den besonderen Bedingungen der Schwerelosigkeit sogar über den (für Quantenphysiker) sehr langen Zeitraum von einer Sekunde miteinander interferieren.
Viel Potential
Die entwickelte Technik besitzt großes wissenschaftliches und technologisches Potential für Hochpräzisionsmessungen: So können in Zukunft z.B. sehr genaue Tests des Einstein‘schen Äquivalenzprinzips (alle Objekte fallen im Vakuum gleich schnell) durchgeführt oder auch neuartige Sensoren für den Einsatz im Weltraum entwickelt werden. Hauke Müntinga ist außerordentlich zufrieden: „Auf diese Veröffentlichung haben wir in den letzten vier Jahren hingearbeitet und freuen uns natürlich sehr, dass sie nun so viel Anklang findet. Von PRL besonders hervorgehoben und sogar mit einem Viewpoint-Artikel bedacht zu werden, ist eine wunderbare Bestätigung für die harte Arbeit“. Und dass es harte Arbeit war und weiterhin bleiben wird, belegt schon die Statistik: 426 Experimente unter den Bedingungen der Schwerelosigkeit wurden im ZARM-eigenen Labor, dem Fallturm Bremen, bereits durchgeführt und weitere 100 sollen in diesem Jahr noch folgen.
Das QUANTUS-Projekt
In der Quantenphysik besteht jedes Atom aus einer Materiewelle, die sich bei sinkender Temperatur ausdehnt. Bei der Herstellung eines Bose-Einstein-Kondensats (BEC) wurde eine Atomwolke auf den absoluten Temperaturnullpunkt (-273 °C) gebracht, wodurch sich die Materiewellen so stark überlagern, dass sie sich zu einer einzigen großen Materiewelle verbinden. Obwohl die Existenz von BECs bereits 1924 von Albert Einstein und Satyendra Nath Bose theoretisch vorhergesagt wurde, gelang die tatsächliche Herstellung dieses oft als „Riesenatom“ bezeichneten Quantensystems erst 1995 und wurde mit dem Nobel-Preis gewürdigt.
2007 wurde im Fallturm Bremen im Rahmen des QUANTUS-Projekts zum ersten Mal ein BEC im freien Fall erzeugt. Während es in einem „normalen“ Labor innerhalb des Bruchteils einer Sekunde zerfällt, kann das BEC im Fallturmexperiment weit länger als eine Sekunde existieren und über diesen Zeitraum auf einen Millimeter anwachsen.
Die aktuellen Fallturmexperimente gehen aber über die reine Herstellung eines BEC unter Schwerelosigkeit hinaus. Hier wird die Quanteneigenschaft von BECs, nämlich deren Interferenzfähigkeit auch nach einer langen Freifallzeit von ca. 1 Sekunde, nachgewiesen. Mit der geplanten Verlängerung der Versuchszeit mit Hilfe von Katapultexperimenten im Fallturm Bremen, Höhenforschungsraketen, Satellitenmissionen oder auch der Internationalen Raumstation ISS, erwartet das QUANTUS-Team, Messungen von bisher unerreichter Präzision durchführen zu können. So lassen sich mit dieser Technologie grundlagenphysikalische Fragestellungen hochpräzise untersuchen, wie z.B. die Grundlagen der Quantenmechanik oder das Zusammenspiel der Quantenmaterie mit Gravitation, eines der großen Rätsel der heutigen Physik. (Physical Review Letters, 2013; doi:10.1103/PhysRevLett.110.093602 )
(ZARM Fallturm-Betriebsgesellschaft mbH, 08.03.2013 – KBE)