1962 aber entdeckte der britische Zellbiologe John B. Gurdon, dass die Programmierung erwachsener Zellen unter bestimmten Bedingungen doch rückgängig gemacht werden kann. Er ging dabei von der Annahme aus, dass theoretisch jede Zelle des Körpers noch die volle Erbinformation enthält – also auch die Information, die für sämtliche anderen Zelltypen benötigt wird. Normalerweise aber wird diese Information nicht komplett mit ausgelesen – wie bei einem Buch, bei dem die Seiten einiger Kapitel verklebt sind und damit unleserlich. Jede Zelle liest dadurch quasi nur den Teil der genetischen Bauanleitung, die sie für ihre Zellfunktionen benötigt.
Darmzellkern in Froschei
In einem Experiment mit Froscheiern gelang es Gurdon jedoch zu beweisen, dass diese Leseblockade aufgehoben werden kann. Für seinen Versuch pflanzte Gurdon den Zellkern einer erwachsenen Darmzelle in die Eizellhülle eines Frosches ein. In Kultur gehalten, entwickelte sich aus diesem Konstrukt nicht etwa eine Darmzelle, sondern ein voll funktionsfähiger Frosch. Die mit dem Darmzell-Erbgut ausgestattete Eizelle brachte alle für einen kompletten Körper nötigen Gewebe und Zellen hervor. Die Eizellumgebung musste den eingepflanzten Zellkern und sein Erbgut irgendwie umprogrammiert haben, so Gurdons Schlussfolgerung. Die Leseblockade für den normalerweise im Darm nicht benötigten Teil der DNA musste aufgehoben worden sein.
Diese Erkenntnis des Forschers wurde von seinen Kollegen zunächst mit Skepsis aufgenommen. Bald jedoch gelang es auch anderen Wissenschaftlern, Gurdons Ergebnisse nachzuvollziehen. Eine Frage blieb dabei allerdings noch offen: Welche Faktoren führten dazu, dass der Kern der erwachsenen Körperzelle plötzlich wieder zu einer undifferenzierten Stammzelle wurde?
Vier Gene setzen die Zelle zurück
Eine Antwort auf diese Frage lieferte mehr als 40 Jahre später Shinya Yamanaka vom Nara Institute of Science and Technology in Japan. Er arbeitete mit embryonalen Stammzellen, den Zellen des Embryos, die noch pluripotent sind, aus denen also noch alle verschiedenen Gewebetypen entstehen können. Yamanaka und seine Kollegen wollten herausfinden, was diese Zellen zu Stammzellen macht, und vermuteten diese Einflussfaktoren in den Genen. In mehreren Experimenten schleusten die Forscher dafür Gene aus den Stammzellen von Mäuseembryos mit Hilfe eines Virus in erwachsene Zellen aus dem Bindegewebe, sogenannte Fibroblasten, ein. Anschließend beobachteten sie mit dem Mikroskop, ob sich an den auf diese Weise genetisch veränderten Zellen Anzeichen für eine „Verjüngung“, für eine Umwandlung zur Stammzelle, zeigten.
Nach zahlreichen Durchgängen hatten Yamanaka und seine Kollegen im Jahr 2006 schließlich Erfolg: Sie stellten fest, dass das Geheimnis der Stammzellen in nur vier einzelnen Genen verborgen lag. Diese Gene mit den kryptischen Bezeichnungen Oct4, Sox2, c-Myc und Klf4 steuern ein ganzes Netzwerk weiterer Gene und sind für das Ablesen und Kopieren der genetischen Informationen wichtig. Alle vier Gene sind im Embryonalstadium eines Organismus aktiv, zwei davon aber stellen ihre Arbeit ein, sobald der Embryo eine bestimmte Zellzahl, das Stadium der Blastozyste, erreicht hat. Gerade sie aber sind für die Pluripotenz einer Zelle und damit für ihre Fähigkeit, sich in alle Zelltypen zu differenzieren, entscheidend.
Mit ihrem Trick hatten die Forscher genau dieses Abschalten der Stammzellgene umgangen: Schleusten sie die noch aktiven Gene aus einer embryonalen Mäusestammzelle in Fibroblasten ein, entwickelten diese sich zurück und wurden wieder pluripotent. Aus den Teilungen dieser Zellen gingen dann nicht mehr nur weitere Bindegewebszellen hervor, sondern auch Nervenzellen oder Zellen der Darmschleimhaut. Die eingeschleusten Gene sorgen dafür, dass die zuvor bei der Körperzelle blockierten – weil nicht benötigten – Teile des Erbguts wieder abgelesen werden konnten. Dadurch erhielt auch diese Zelle das Potenzial, wieder nahezu alle Zelltypen hervorzubringen. 2012 erhielten Yamanaka und Gurdon für ihre Entdeckung der Reprogrammierbarkeit von Zellen den Medizin-Nobelpreis.
Nadja Podbregar
Stand: 13.09.2013