Technik

Hannover Messe: Trikopter eröffnet neue Perspektiven für Luftaufnahmen

Universität des Saarlandes

Er kann schief in der Luft stehen oder in gerader Linie seitwärts schweben, ohne dass er zuvor gekippt werden müsste: Studenten und Forscher am Lehrstuhl für Systemtheorie und Regelungstechnik der Saar-Uni haben einen Trikopter entwickelt. Jeder der drei Propeller des Flugroboters lässt sich unabhängig schwenken. Hierdurch eröffnet das ferngesteuerte Fluggerät neue Perspektiven für Film- und Fotoaufnahmen. So wird zum Beispiel eine ununterbrochen gerade Kameraführung bei horizontalen Flügen möglich. Ihren Trikopter zeigt die Arbeitsgruppe um Professor Joachim Rudolph vom 8. bis 12. April am saarländischen Forschungsstand auf der Hannover Messe (Halle 2, Stand C 40).

Ein Flug mit drei Propellern ist normalerweise ein instabiles Unterfangen. Im Grunde müsste ein solches Flugobjekt ins Trudeln geraten und um die eigene Achse wirbelnd abstürzen. Aus diesem Grund sorgen bei Quadrokoptern vier Propeller für Flugstabilität und -sicherheit.

Gerade die Herausforderung der drei Propeller und die damit zusammenhängenden Tücken weckten den sportlichen Ehrgeiz von Studenten, Doktoranden und Forschern am Lehrstuhl für Systemtheorie und Regelungstechnik von Professor Joachim Rudolph. Ihre Lösung: Die drei Propeller sind nicht starr fixiert, sie sind vielmehr schwenkbar: In koordiniertem Zusammenspiel gleichen sie Störungen aus und können – durch das richtige Quäntchen Schub in die eine oder andere Richtung – einen Absturz verhindern.

Was sich so leicht anhört, zeigt echtes Fingerspitzengefühl für Regelungstechnik. Beim stabilen Flug müssen die Propeller perfekt zusammenarbeiten – und dies soll automatisch passieren. Denn der Pilot, der den Trikopter bequem und einfach vom Boden aus fernsteuert, soll von der Komplexität des Vorgangs nichts merken. Ein halbes Jahr dauerten die Vorarbeiten: Die angehenden Ingenieure erforschten das Zusammenspiel der Propeller und das theoretische Verhalten des Trikopters im Flug. Sie simulierten es in Modellen, berechneten es in Gleichungen und machten es damit vorhersagbar. Hierdurch konnten die Forscher dem System beibringen, mit kippeligen Situationen zurechtzukommen.

Aufgrund ihrer Ergebnisse haben sie einen Prototyp gebaut, der sicher durch die Gänge des Instituts oder über die Wiese auf dem Uni-Campus schwebt.

Herzstück des Trikopters ist ein so genannter Mikro-Controller, ein winziger Halbleiterchip. Auf ihm ist alles enthalten, was für die Regelung und Steuerung der Propeller erforderlich ist. Hier laufen auch die einzelnen Messungen der Sensoren zusammen, die die Beschleunigung und Drehraten des Trikopters messen. Algorithmen berechnen und schätzen flugbegleitend seine Koordinaten. Anhand der Daten erkennen die Algorithmen genau, wann der Flugroboter eine Bewegung macht, die er besser nicht machen sollte. Und wenn dies geschieht, werden sofort Befehle ausgerechnet und weitergeleitet, die entgegenwirken: etwa die Motordrehzahl eines der Propeller zu erhöhen oder seine Neigung einen Tick weit zu ändern.

Die mit dem Trikopter möglichen Flugmanöver – wie das ruhige Schweben auf der Stelle oder der horizontale Seitwärtsflug ohne Kippen – können zum Beispiel bei Filmaufnahmen aus der Luft genutzt werden: Normalerweise muss für einen horizontalen Flug das Fluggerät gekippt werden – die Kamera kippt mit oder wackelt zumindest beim Versuch, die Schräglage auszugleichen. Jetzt macht der Trikopter hier eine stabile und gerade Kameraführung möglich.

(Universität des Saarlandes, 25.03.2013 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Roboter - Geschichte - Technik - Entwicklung von Daniel Ichbiah

Menschmaschinen - Wie uns die Zukunftstechnologien neu erschaffen von Rodney Brooks

Top-Clicks der Woche