„Kleber“ aller Materie vermessen: Physiker haben die starke Kernkraft mit bisher unerreichter Präzision vermessen – die Grundkraft, die alle Materie zusammenhält. Durch Protonenkollisionen im Teilchenbeschleuniger LHC und die dabei entstehenden Z-Bosonen gelang es dem Team, die Bindungsstärke der starken Wechselwirkung bis auf rund 0,8 Prozent genau zu messen. Dies schafft wichtige Voraussetzungen, um das Standardmodell der Teilchenphysik zu überprüfen und noch unentdeckte Kräfte oder Teilchen aufzuspüren.
Die starke Wechselwirkung ist die vielleicht fundamentalste aller Grundkräfte. Denn sie ist der „Kleber“, der die Protonen und Neutronen im Atomkern zusammenhält. Die Trägerteilchen der starken Kernkraft, die Gluonen, koppeln die Quarks in diesen Kernbausteinen aneinander. Zwar wirkt die starke Wechselwirkung nur auf kleinstem Raum, gleichzeitig ist sie jedoch die stärkste und wichtigste aller Grundkräfte im Kosmos – ohne sie gäbe es unser Universum in seiner heutigen Form nicht.

Doch trotz ihrer enormen Bedeutung ist die starke Kernkraft die am wenigsten erforschte aller vier Grundkräfte. Selbst ihre Intensität – die sogenannte Kopplungskonstante – ist bisher nur mit großer Unsicherheitsspanne bekannt. „Obwohl die Stärke der starken Kernkraft ein Schlüsselparameter des Standardmodells ist, ist sie nur bis auf ein Prozent genau gemessen“, erklärt Stefano Camarda von der ATLAS-Kollaboration am Forschungszentrum CERN. „Die weit schwächere elektromagnetische Grundkraft kennen wir dagegen bis auf ein Milliardstel genau.“
„Schubs“ abgestrahlter Gluonen gemessen
Um dies zu ändern, haben die Physiker der ATLAS-Kollaboration nun die Kopplungskonstante der starken Kernkraft über eine relativ wenig von Störeffekten beeinträchtigte Methode gemessen. Dafür werteten sie Kollisionen aus, bei denen Protonen im Large Hadron Collider (LHC) am CERN mit einer Energie von acht Teraelektronenvolt aufeinanderprallten. Bei diesen Kollisionen entstehen unter anderem Z-Bosonen, Elementarteilchen, die bei der gegenseitigen Auslöschung von zwei Quarks freiwerden.