Physik

Einstein rettet Schrödingers Katze

Die Relativitätstheorie könnte erklären, warum Quantenphänomene nicht im Makrokosmos funktionieren

Schrödingers Katze: Dieses Gedankenexperiment gilt nur in der Welt der kleinsten Teilchen © Dhatfield/ CC-by-sa 3.0

Einstein erklärt’s: Ob die Verschränkung von Atomen oder die Unschärferelation – im Makrokosmos funktionieren diese faszinierenden Phänomene der Quantenwelt nicht. Denn bei größeren Objekten werden die Quanteneffekte unterdrückt. Wodurch, könnte Einsteins Allgemeine Relativitätstheorie erklären. Denn wie Forscher im Fachmagazin „Nature Physics“ berichten, beeinflusst die Dehnung der Zeit durch die Gravitation auch die Teilchen in diesen Objekten – und verhindern so Quantenphänomene.

Im Jahr 1915 revolutionierte Einsteins Allgemeine Relativitätstheorie unser Verständnis der Gravitation. Er postulierte, dass sich die Gravitation als Krümmung der Raumzeit verstehen lässt und dass sie selbst die Zeit beeinflussen kann: Große Massen dehnen sie. Diese Zeitdilatation zeigt sich auch auf der Erde: Menschen, die im Erdgeschoss arbeiten, altern langsamer als ihre Kollegen im ersten Stock – allerdings nur um etwa zehn Nanosekunden pro Jahr. Dieser Effekt ist winzig klein, wurde jedoch mit präzisen Atomuhren bestätigt.

Schrödingers Katze wäre längst tot

Igor Pikovski von der Harvard University in Cambridge und seine Kollegen haben nun einen weiteren Nebeneffekt der Einsteinschen Zeitdehnung entdeckt: Sie könnte schuld daran sein, dass Quantenphänomene in der makroskopischen Alltagswelt nicht funktionieren. Das bekannteste ist die Überlagerung: Ein Quantenteilchen kann sich, solange es nicht gemessen wird, in mehreren Zuständen gleichzeitig befinden, sie überlagern sich.

Der Physiker Erwin Schrödinger illustrierte dieses Prinzip in seinem berühmten Gedankenexperiment der Katze in einer verschlossenen Kiste mit Gift. Solange niemand die Kiste öffnet und nachschaut, ist die Katze aus quantenmechanischer Sicht gleichzeitig tot und lebendig. Allerdings: Bei einer echten Katze oder einem anderen makroskopischen Objekte existieren solche quantenphysikalischen Überlagerungen nicht.

Wellenfunktion eines harmonisch oszillierenden Quanten-Teilchens © AllenMcC/ CC-by-sa 3.0

Zeitdehnung beeinflusst Schwingungen

Warum die Quantenmechanik bei größeren Objekten nicht greift, war bislang unklar. Man vermutet aber, dass Wechselwirkungen mit anderen Teilchen die Überlagerung verhindert. Pikovski und seine Kollegen haben nun eine konkrete Hypothese dazu rechnerisch überprüft: Sie gehen davon aus, dass die Zeitdehnung durch die Schwerkraft der Schuldige ist.

Denn jedes Teilchen – egal ob in einem Objekt gebunden oder einzeln – bewegt sich ständig ein bisschen. Diese Schwingungen jedoch werden durch die Zeitdilation beeinflusst, wie die Forscher erklären. Nahe dem Erdboden wird es langsamer, in größeren Höhen wird es schneller. Dadurch aber treten Unterschiede innerhalb eines Objekts auf, die eine Überlagerung verhindern. „Wichtig daran ist, dass diese durch die Zeitdilatation bedingte Dekohärenz komplett innerhalb des Rahmens sowohl der Quantenmechanik als auch der klassischen Physik stattfindet“, betonen Pikovski und seine Kollegen.

Nachweis schwierig, aber nicht unmöglich

„Es ist recht überraschend, dass die Gravitation eine Rolle für die Quantenphysik spielen kann“, so Pikovski. „Gravitation wird üblicherweise auf astronomischen Skalen studiert, aber sie scheint selbst auch für die winzigsten Bausteine der Natur wichtig zu sein“. Noch haben die Forscher dieses Phänomen nur theoretisch postuliert und vorgerechnet. Sie schlagen aber auch vor, wie man den Effekt der Zeitdilatation beispielsweise innerhalb von Molekülen experimentell nachweisen könnte.

Dafür müssten allerdings alle anderen Störmechanismen ausgeschaltet werden, darunter die Einflüsse umgebender Moleküle und die thermische Ausstrahlung. Ein solches Experiment müsste daher wahrscheinlich unter Heliumkühlung und in einem ultrareinen Vakuum durchgeführt werden. „Solche Experimente zur Messung der Dekohärenz durch die Zeitdehnung wären eine große Herausforderung“, so die Forscher. „Aber die schnellen Fortschritte bei der Kontrolle großer Quantensysteme und in der Quantenmessung werden unausweichlich in einen Bereich kommen, in dem dieses Phänomen wichtig wird.“ (Nature Physics, 2015; doi: 10.1038/nphys3366)

(Universität Wien, 16.06.2015 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

Dossiers zum Thema

Albert Einstein - Wie die Zeit relativ wurde und die vierte Dimension entstand

Bücher zum Thema

Physik ohne Ende - Eine geführte Tour von Kopernikus bis Hawking von Jörg Hüfner und Rudolf Löhken

Kleines 1x1 der Relativitätstheorie - Einsteins Physik mit Mathematik der Mittelstufe von Gottfried Beyvers und Elvira Krusch

Sie irren, Einstein! - Newton, Einstein, Heisenberg und Feynman diskutieren die Quantenphysik von Harald Fritzsch

Zahl Zeit Zufall - Alles Erfindung? von Rudolf Taschner

Einsteins Spuk - Teleportation und weitere Mysterien der Quantenphysik von Anton Zeilinger

Top-Clicks der Woche