Als Folge des Klimawandels drohen in den Alpen und anderen Hochgebirgen immer mehr Hänge abzurutschen – mit fatalen Folgen für Mensch und Infrastruktur. Eine dauerhafte Überwachung aller gefährdeten Areale scheiterte bislang an zu hohen Kosten und zu großem Aufwand. Münchener Geoforscher haben nun ein preisgünstiges System entwickelt, das Hanglagen mithilfe mehrerer Technologien permanent beobachtet, Veränderungen auswertet und die betroffenen Kommunen frühzeitig vor drohenden Erdrutschen warnt. Die Wissenschaftler selbst erhoffen sich durch die langfristigen Messungen ein besseres Verständnis dieser Naturphänomene.
Doren im Bregenzerwald, Februar 2007: Auf einer Länge von 650 Metern bricht ein Hang weg, gewaltige Erdmassen rutschen in die Tiefe. Die nächstgelegenen Wohnhäuser stehen nur unweit der 70 Meter hohen Abbruchkante. Die Beinahe-Katastrophe ist kein Einzelfall. Geologen haben in den vergangenen Jahren in den Alpen und anderen Hochgebirgen zunehmend so genannte labile Bodenmassen beobachtet, die an Hanglagen ins Rutschen geraten und auf einem stabilen Untergrund unaufhaltsam Richtung Tal gleiten.
Ursache dafür sind nach Ansicht der Wissenschaftler vor allem stärkere Regenfälle und Schneeschmelzen aufgrund des Klimawandels, die den Untergrund aufweichen und gleichzeitig schwerer machen.
Teure Geräte
Potenziell gefährliche Bergflanken zu identifizieren, ist nicht allzu schwierig. Viele sind schon seit Jahrhunderten instabil, Überlieferungen zeugen von früheren Unglücken. In den Alpenländern stehen zudem geologische Aufnahmen zur Verfügung, die Risikokandidaten verraten. Eine permanente Überwachung aller unruhigen Massen aber war bislang unmöglich. Um Bewegungen aufzuspüren, mussten Experten Sonden in Bohrlöcher einlassen und an der Oberfläche aufgestellte Markierungspunkte vermessen.
Diese Geräte dauerhaft zu installieren, ist jedoch in der Regel schlichtweg zu teuer. So können die Kontrolleure nur in Abständen prüfen und gewinnen nur punktuelle Erkenntnisse über das Innenleben der Hänge.
Bauteile „von der Stange“
Forscher der Technischen Universität München (TUM) und der Universität der Bundeswehr München haben nun Geosensoren entscheidend weiterentwickelt und mit einer Kontrollsoftware zu einem ebenso flexibel einsetzbaren wie kostengünstigen Frühwarnsystem verknüpft. Auch sie bohren an mehreren Stellen in den Untergrund.
„Die Bohrlöcher bestücken wir aber mit ganz simplen Koaxialkabeln, wie man sie beispielsweise von Antennenkabeln kennt“, sagt Professor Kurosch Thuro vom TUM-Lehrstuhl für Ingenieurgeologie. Die Wissenschaftler nutzen einen einfachen, aber effektiven Mechanismus: Gerät die obere Erdschicht ins Rutschen, wird das Kabel am Übergang zur unbeweglichen Schicht gequetscht. Ein kleines Übertragungsgerät an der Oberfläche registriert dies und leitet die Information weiter.
Daneben verteilen die Ingenieurgeodäten der Bundeswehruniversität um Professor Otto Heunecke Sensoren über den Hang, deren Position mittels GPS bestimmt werden kann. Auch hier lag die Herausforderung darin, mit preiswerten Bauteilen „von der Stange“ eine Messgenauigkeit im Millimeterbereich zu erreichen, um schon kleinste Verschiebungen zu registrieren.
Neue Generation von Messgeräten
Als Drittes setzen die Wissenschaftler eine neue Generation von Messgeräten ein, so genannte Videotachymeter, die mit Laserscanner und Kamera arbeiten. Musste man früher noch künstliche Reflektoren aufstellen, um Richtung, Entfernung und Höhe eines Ziels zu messen, erkennen die Geräte heute auch natürliche Ziele, beispielsweise Steine oder Baumstümpfe.
Die Forscher haben nun den Prototypen eines Herstellers so programmiert, dass er auch Bewegungen beliebig vieler Ziele erkennt. Der Tachymeter zeichnet die Struktur etwa eines Felsens auf, vermisst diese regelmäßig neu und registriert dabei Veränderungen. „Wenn wir keine Reflektoren aufstellen müssen, sparen wir erneut Geld“, sagt Professor Thomas A. Wunderlich vom TUM-Lehrstuhl für Geodäsie. „Und wir müssen nicht fürchten, dass sie von weidenden Kühen umgerannt werden.“
Dichtes Netz an Beobachtungspunkten
Mit diesen drei Komponenten knüpfen die Wissenschaftler ein dichtes Netz an Beobachtungspunkten über den Hang. Zusammengeführt werden die Daten in einer zentralen Datenbank. Das Gehirn des Systems wertet die Informationen zusammen mit weiteren Kennziffern aus, vor allem mit Wetterdaten.
Dreieinhalb Jahre lang haben die Forscher ihre Entwicklung auf dem Sudelfeld im oberbayerischen Oberaudorf getestet. Dort bewegt sich eine Bergflanke und bedroht mehrere Almen und eine Bundesstraße. „Die Datenreihen zeigen uns eindrucksvoll, was der Hang durchlebt, wie sich Niederschlag und Frost bemerkbar machen, was mechanisch vor sich geht“, sagt Thuro. „Wir verstehen jetzt viel mehr von dieser Bewegung.“
Auswertung der Daten ermöglicht Frühwarnungen
Einzelne Ereignisse können die Wissenschaftler deshalb besser beurteilen. Als beispielsweise der Hang im Mai 2010 innerhalb kurzer Zeit um vier Millimeter abrutschte, wussten sie, dass die auf den ersten Blick geringe Distanz für dieses Areal außergewöhnlich und deshalb besorgniserregend war. Mehr noch: Die Auswertung der Daten ermöglicht sogar Frühwarnungen, bevor der Hang sich überhaupt bewegt hat.
„Weil wir nun wissen, wie sich dort Regenfälle auswirken, konnten wir einen Grenzwert festlegen“, erklärt Thuro. Überschreitet der Grundwasserdruck einen bestimmten Wert, schlägt das System Alarm. „Dann gibt es noch circa zweieinhalb Tage Zeit zwischen dem Anstieg des Pegels und einer Hangbewegung.“
Gefährdete Hänge sperren
Betroffene Kommunen können den Forschern zufolge aus dem System einen unmittelbaren Nutzen ziehen, weil es ihnen die Daten ohne Umweg zur Verfügung stellt – übersetzt in verständliche Schaubilder und Erklärungen. Nach einer Frühwarnung können die Verantwortlichen je nach Gefahr Hänge sperren, den Verkehr umleiten oder Häuser evakuieren.
Die Forscher entwickeln nun das System unter dem Titel „Early Warning System for Alpine Slopes (alpEWAS)“ mit zwei Industriepartnern zur Marktreife. Erste Interessenten haben sich bereits gemeldet, in Doren ist ein Teil des Systems sogar schon im Einsatz. Nicht nur für die Anwender, auch für die Wissenschaft selbst verspricht sich Thuro deutliche Fortschritte: „Je mehr Hänge wir dauerhaft untersuchen, desto mehr verstehen wir größere Zusammenhänge zwischen einzelnen Ereignissen und dem Makroklima in den Gebirgen.“
(Technische Universität München (TUM), 07.04.2011 – DLO)