So genannte epigenetische Markierungen auf dem Erbgut bestimmen, ob ein Gen aktiviert wird oder stumm bleibt. Diese zusätzlichen Signale helfen, unsere Gene in jeder spezifischen Zelle des Körpers anders zu interpretieren. Die epigenetischen Markierungen werden kurz nach der Entstehung neuen Lebens in der befruchteten Eizelle völlig neu programmiert. Ein internationales Forscherteam berichtet nun in „Nature Communication“ über vollkommen neue Einblicke in die Vorgänge, die diese epigenetische Reprogrammierung steuern.
Jede menschliche Zelle des Körpers enthält die komplette einzigartige genetische Information eines Individuums. Die circa 25.000 bis 30.000 Gene des Genoms sind in jeder Zelle auf eine ganz spezifische Art und Weise „an- oder abgeschaltet“.
Epigenome werden umprogrammiert
Ob die Gene in den verschiedenen Zellen aktiv sind oder stumm bleiben, entscheiden zusätzliche epigenetische Veränderungen, beispielsweise Methylgruppen (CH3-Gruppen), die an die DNS- Bausteine angeheftet werden. Das universelle Genom des Menschen ist in jeder Zelle des Körpers von einem charakteristischen Netz dieser epigenetischen Schalter überzogen.
Zum Beginn eines neuen Lebens werden die Epigenome umprogrammiert, um zunächst einmal das neue Genom auf seine vielen Aufgaben vorzubereiten, aber auch, um sicher zu stellen, dass epigenetische Fehler der Eltern nicht an die Folgegeneration weitergegeben werden. Nach dem Verschmelzen von Eizelle und Spermium werden daher die epigenetischen Markierungen der elterlichen Chromosomen auf eine neue epigenetische Programmstufe gesetzt. Diese umfassende Dekodierung wird als epigenetische Reprogrammierung bezeichnet.
Neue Einblicke in molekulare Mechanismen
Völlig neue Einblicke in die molekularen Mechanismen, die dabei ablaufen, hat nun ein internationales Wissenschaftler-Team um Jörn Walter, Professor für Epigenetik an der Universität des Saarlandes, gewonnen: „Damit sich ein Embryo normal entwickeln kann, ist eine kontrollierte epigenetische Dekodierung des mütterlichen und väterlichen Erbmaterials kurz nach der Entstehung neuen Lebens von zentraler Bedeutung.“
Die Forscher fanden jetzt heraus, dass bei der Reprogrammierung die Methylgruppen auf der DNA chemisch verändert werden. Hierdurch verändern die Chromosomen schlagartig ihre epigenetische Struktur. Die neuen Erkenntnisse über die molekularen Abläufe haben weitreichende Bedeutungen für viele Fragen der Entwicklungsbiologie und liefern vollkommen neue Ansatzmöglichkeiten, um epigenetisch bedingte Erbgutveränderungen im Verlauf des Lebens und daraus resultierende Erkrankungen zu entschlüsseln.
Mütterliche Dominanz
Kurz nach ihrer Befruchtung beginnt die Eizelle, die in Chromosomen geordneten Strukturen des väterlichen Erbmaterials erst zu „entpacken“ und dann epigenetisch zu dekodieren. Das mütterliche Erbmaterial bleibt dagegen weitgehend geschützt. Diese mütterliche „Dominanz“ über die väterlich vererbten Chromosomen wurde vor über zehn Jahren von den Forschern entdeckt.
Das Team fand nun heraus, wie die epigenetische Dekodierung der väterlichen Chromosomen im frühen Embryonenstadium abläuft: Ein erster Schritt ist das zusätzliche Anhängen einer einfachen Hydroxyl-Gruppe (OH-Gruppe) an die bereits bekannte modifizierte Base 5-methyl-Cytosin. Darüber hinaus konnten die Wissenschaftler den an diesem Vorgang beteiligten enzymatischen Prozess entschlüsseln. Sie wiesen nach, dass das Enzym Tet3 als ein zentrales Schaltenzym für den Umwandlungsprozess verantwortlich ist.
Kampf der Geschlechter
Auch in der Frage, warum nur die vom Vater stammenden Chromosomen dekodiert werden, während die mütterlichen größtenteils geschützt sind, kamen die Wissenschaftler einen wesentlichen Schritt weiter: Sie konnten zeigen, dass die Eizelle ihr eigenes Erbgut vor dem Vorgang der Reprogrammierung durch ein Protein namens Stella schützt. Die mütterliche Eizelle bestimmt also mit sehr ausgeklügelten epigenetischen Werkzeugen über die Interpretation des väterlichen Genoms.
Bereits vor zehn Jahren hatten die Wissenschaftler diesen Kampf der Geschlechter beschrieben – aber erst jetzt sind sie den Mechanismen auf die Spur gekommen. Die genauen biologischen Konsequenzen der massiven, einseitigen Umwandlung väterlicher Chromosomen bleiben zwar ein noch zu lösendes Rätsel, die Erkenntnisse der Forscher eröffnen aber vollkommen neue Perspektiven, diese in Zukunft zu lösen.
Wichtige Ergebnisse
„Die schnelle Reprogrammierung der epigenetischen Information des väterlichen Genoms erfüllt vermutlich zwei ‚Aufgaben‘: Zum Einen werden die epigenetischen Fehler des Vaters gelöscht und gleichzeitig wird das Genom für die Vielzahl der neuen Aufgaben vorbereitet, die für eine totipotente, also vollständige Entwicklung wichtig sind“, erläutert Walter.
„Unsere Arbeit trägt dazu bei, die molekularen Signale und Schalter zu verstehen, die für die epigenetische Reprogrammierung entscheidend sind. Da epigenetische Programmfehler in unmittelbarem Zusammenhang mit der Entstehung komplexer Erkrankungen wie Krebs, Immun- und Stoffwechselerkrankungen oder Neuronalen Erkrankungen zu sehen sind, haben die von uns gefundenen Mechanismen eine vermutlich viel weitreichende Bedeutung als ‚nur‘ für die Steuerung erster Lebensvorgänge“, sagt der Epigenetiker. (Nature Communication, 2011; doi:10.1038/ncomms1240)
(Universität des Saarlandes, 16.03.2011 – DLO)