Die winzigen, hohlen Nanoröhren sind vielfältig einsetzbar und entsprechend begehrt. Doch ihre Herstellung ist bisher schwierig. Jetzt haben Max-Planck-Forscher eine neue Methode entwickelt, bei der aus drei Verbindungen bestehende Nanoröhren mithilfe des so genannten Kirkendall-Effekts entstehen, einer speziellen Art der Diffusion in Festkörpern. Wie die Wissenschaftler in „Nature Materials“ berichten, lassen sich so auch sehr effektiv Nanodrähte erzeugen.
{1l}
Nanoröhren aus Verbindungsmaterialien können auf ganz verschiedene Weise erzeugt werden – etwa durch Aufrollen von Schichtmaterialien, das Beschichten von Templaten oder das Herauslösen des Kerns aus einem Kern-Hülle-Nanodraht. Doch bei Verbindungsmaterialien, die aus drei Elementen bestehen, zeigen die meisten der bisher verwendeten Methoden Mängel oder Grenzen: Entweder benötigt man geschichtete Materialien oder Template wie poröses Aluminiumoxid, oder die realisierten Nanoröhren haben ein zu kleines Verhältnis von Länge zu Durchmesser. Hinzu kommt, dass die Kristallinität der Nanoröhren bei diesen Methoden unzureichend ist.
Die Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik haben nun eine neue, universell einsetzbare Technik vorgestellt, mit der man Nanoröhren aus ternären – also aus drei Elementen bestehenden – chemischen Verbindungen herstellen kann. Die Forscher demonstrierten die Methode am Beispiel von ultralangen, einkristallinen ZnAl2O4 Nanoröhren mit einem Durchmesser von rund 40 Nanometer und einer Wandstärke von etwa zehn Nanometer.