Die große Hoffnung der Teilchenphysiker ruht auf einem gigantischen Magnetring nahe der Stadt Genf: Der Teilchenbeschleuniger Large Hadron Collider (LHC) soll ab 2008 Protonen mit bisher unerreichter Energie aufeinander prallen lassen. Jetzt sind die ersten Bestandteile eines Herzstücks der Anlage, des Detektors CMS (Compact Muon Solenoid) fertig geworden.
Der hausgroße, 12.000 Tonnen schwere Elementarteilchen-Detektor CMS fängt die bei den Kollisionen entstehenden Teilchen auf und identifiziert sie. Herzstück von CMS ist ein Spurendetektor, der die Bahnen der Teilchen aufzeichnet, die explosionsartig den Kollisionspunkt verlassen. Er ist aus 25.000 Siliziumsensoren zusammengesetzt – etwa ein Fünftel haben in elfjähriger Arbeit Wissenschaftler der Universität und des Forschungszentrums Karlsruhe jetzt entwickelt, hergestellt und getestet. Der Einbau des weltgrößten Spurendetektors und die Endmontage des CMS-Detektors werden noch etwa ein Jahr dauern.
Suche nach dem Rätsel-Teilchen
Der Detektor soll den Geheimnissen der kleinsten Teilchen und damit der Frage nach Ursprung und Zusammensetzung des Universums nachgehen. Dazu zählt die Suche nach dem Higgs-Teilchen (Higgs-Boson), von dem Physiker annehmen, dass es die Masse aller Materie verursacht. Daneben wollen Physiker mit CMS auch Teilchen nachweisen, aus denen die unsichtbare Dunkle Materie besteht, die etwa ein Viertel der Gesamtmasse des Universums ausmacht. Der CMS-Detektor ist einer von vier großen Detektoren am LHC.
Das Higgs-Boson ist das letzte Teilchen des Standardmodells der Elementarteilchenphysik, das die Physiker noch nicht nachweisen konnten. Das Modell beschreibt die fundamentalen Teilchen und die Kräfte zwischen ihnen. "Wir stellen uns vor, dass sich im Universum neben den uns vertrauten elektrischen, magnetischen und Gravitations- Feldern auch ein Higgs-Feld befindet, das Teilchen eine träge Masse verleiht", sagt Professor Dr. Thomas Müller vom Zentrum für Astroteilchen- und Elementarteilchenphysik (CETA) an der Universität Karlsruhe.
Gewirr der Teilchenbahnen
Das Higgs-Feld besteht aus Quanten, den Higgs-Bosonen. Diese können an Beschleunigern künstlich erzeugt werden – der Nachweis aber gelang noch nicht, da sie nur schwer von ähnlichen, aber sehr viel häufigeren Enstehungs- und Zerfallsprozessen anderer Teilchen unterschieden werden können. Daher ist es nötig, die Daten möglichst vieler Teilchenkollisionen zu sammeln, um mit statistischen Methoden für Higgs-Bosonen charakteristische Signale aus dem Gewirr der Teilchenbahnen herauszufiltern.
"Man muss 100.000 Milliarden Kollisionen auswerten, um ein einziges Higgs-Boson nachweisen zu können", sagt Müller. Der neue Teilchenbeschleuniger LHC wird 100 Mal mehr Protonen pro Sekunde aufeinander schießen können als derzeit am Fermilab bei Chicago, dem bislang leistungsfähigsten Teilchenbeschleuniger, möglich. Die Physiker hoffen daher, das Higgs- Boson in wenigen Jahren nachweisen zu können.
1.000 Buchseiten Daten pro Kollision
Der Spurendetektor im CMS-Detektor spielt dabei eine entscheidende Rolle. Mit seinen zehn Millionen haardünnen Siliziumstreifen, die mit insgesamt 210 Quadratmetern beinahe die Fläche eines Tennisplatzes erreichen, wird er die Spuren aller elektrisch geladenen Teilchen aufzeichnen können, die bei einer Kollision entstehen. Pro Sekunde ereignen sich etwa 40 Millionen Kollisionen. Die Anforderungen an Empfindlichkeit und Schnelligkeit des Spurendetektors sind daher sehr hoch. Auch ist er enorm widerstandsfähig gegen Strahlung.
Pro Kollision entsteht eine Datenmenge, die etwa 1.000 Buchseiten entspricht. Die Energie und die Bahnen der etwa 160 bei einem Zusammenstoß erzeugten Elementarteilchen und ihrer Zerfallsprodukte müssen zueinander in Beziehung gesetzt werden. Die Physiker wollen auf diese Weise für das Higgs-Boson typische Zerfallsprozesse aus der Datenflut filtern, so als suche man nach dem Fingerabdruck eines bestimmten Menschen auf dem Türgriff eines öffentlichen Gebäudes.
Schwierige Suche
"Das ist ein großes und kompliziertes Puzzle", sagt Müller. Mit Hilfe eines weltweiten Netzwerkes von Rechenzentren, dem Grid, soll es gelöst werden. Das Grid fasst die Rechenkapazität der Zentren zusammen und erlaubt so die relativ schnelle Lösung komplexer Aufgaben. Die einzelnen Standorte sind über eine leistungsfähige Internetstruktur miteinander verknüpft, die schnellen Datenaustausch erlaubt. Am Forschungszentrum Karlsruhe befindet sich der deutsche Knoten GridKa.
Wissenschaftler am Institut für Experimentelle Kernphysik haben die Kollisionen simuliert, um die Nachweismöglichkeiten für Higgs-Bosonen zu untersuchen. Sie sagen eine schwierige Suche voraus. "Wir müssen das Verhalten des Detektors in der Praxis gut kennen, um das Higgs- Boson finden zu können", sagt Müller. Er ist dennoch zuversichtlich, dass das innerhalb weniger Jahre möglich ist. Auch wenn das rätselhafte Teilchen schwerer sein sollte als erwartet, kann es am LHC erzeugt werden. Die Energie, auf die Protonen beschleunigt werden können, deckt den theoretisch möglichen Massenbereich des Higgs-Bosons ab.
(Universität Karlsruhe, 29.08.2006 – NPO)