Berliner Forscher haben aus einzelnen Photonen zwei Quantenbits, die Grundbausteine eines zukünftigen Quantencomputers, erzeugt, die einen einfachen Algorithmus erfolgreich lösen konnten. Die Qubits waren über ihre Polarisation und räumliche Ausrichtung kodiert.
{1l}
Quantencomputer basieren auf den Gesetzen der Quantenphysik. Sie ermöglichen es, komplexe Probleme zu lösen, für die die Rechenleistung herkömmlicher klassischer Computer nicht ausreicht. Statt mit Bits, die den Wert Null oder Eins haben können, rechnen Quantencomputer mit Quantenbits oder kurz Qubits. Qubits kann man im Prinzip in allen physikalischen Systemen realisieren, die sich durch zwei Zustände vollständig beschreiben lassen. Dies können zwei mögliche elektronische Zustände in einem Atom (angeregt oder abgeregt), zwei Richtungen eines quantisierten Stromflusses in einem Supraleiter (Uhrzeigersinn oder Gegenuhrzeigersinn) oder der Eigendrehimpuls bzw. Spin von Atomkernen (Rotationsachse nach oben oder nach unten) sein. Das Besondere am Quantencomputer ist, dass es auch so genannte Überlagerungen der Zustände Null und Eins gibt.
Logische Gatter mit Photonen
Eine einfache Realisierung eines Qubits gelingt mittels der Kodierung in den beiden Schwingungsrichtungen (z.B senkrecht oder waagerecht) eines einzelnen Licht-"Teilchen" oder Photons. Ein weiteres Qubit kann für dasselbe Photon durch seine räumliche Mode repräsentiert sein (das Photon läuft nach links oder nach rechts). Der besondere Vorteil für die Demonstration von Quantencomputing mit Photonen ist, dass sich sehr einfach logische Gatter, das sind die Grundbausteine eines Computers, durch passive optische Elemente wie Strahlteiler, Verzögerungs- oder Polarisationsplatten realisieren lassen.