Berliner Forscher haben aus einzelnen Photonen zwei Quantenbits, die Grundbausteine eines zukünftigen Quantencomputers, erzeugt, die einen einfachen Algorithmus erfolgreich lösen konnten. Die Qubits waren über ihre Polarisation und räumliche Ausrichtung kodiert.
{1l}
Quantencomputer basieren auf den Gesetzen der Quantenphysik. Sie ermöglichen es, komplexe Probleme zu lösen, für die die Rechenleistung herkömmlicher klassischer Computer nicht ausreicht. Statt mit Bits, die den Wert Null oder Eins haben können, rechnen Quantencomputer mit Quantenbits oder kurz Qubits. Qubits kann man im Prinzip in allen physikalischen Systemen realisieren, die sich durch zwei Zustände vollständig beschreiben lassen. Dies können zwei mögliche elektronische Zustände in einem Atom (angeregt oder abgeregt), zwei Richtungen eines quantisierten Stromflusses in einem Supraleiter (Uhrzeigersinn oder Gegenuhrzeigersinn) oder der Eigendrehimpuls bzw. Spin von Atomkernen (Rotationsachse nach oben oder nach unten) sein. Das Besondere am Quantencomputer ist, dass es auch so genannte Überlagerungen der Zustände Null und Eins gibt.
Logische Gatter mit Photonen
Eine einfache Realisierung eines Qubits gelingt mittels der Kodierung in den beiden Schwingungsrichtungen (z.B senkrecht oder waagerecht) eines einzelnen Licht-"Teilchen" oder Photons. Ein weiteres Qubit kann für dasselbe Photon durch seine räumliche Mode repräsentiert sein (das Photon läuft nach links oder nach rechts). Der besondere Vorteil für die Demonstration von Quantencomputing mit Photonen ist, dass sich sehr einfach logische Gatter, das sind die Grundbausteine eines Computers, durch passive optische Elemente wie Strahlteiler, Verzögerungs- oder Polarisationsplatten realisieren lassen.
Mitarbeitern der Arbeitsgruppe Nano-Optik von Oliver Benson am Institut für Physik der Humboldt-Universität gelang es nun, eine Lichtquelle, die einzelne Photonen auf Kommando emittiert, zu benutzen, um zwei Qubits darzustellen, kodiert in ihrer Polarisation und ihrer räumlichen Mode. Mit Hilfe verschiedener optischer Komponenten konnte dann ein Quantenalgorithmus – der Deutsch-Josza- Algorithmus – erfolgreich demonstriert werden. Ihre Ergebnisse wurden in der aktuellen Ausgabe der Physical Review Letters veröffentlicht.
Münze mit doppeltem Kopf
Das Problem, das mit dem Deutsch-Josza-Algorithmus gelöst werden kann, hat im Falle von zwei Qubits eine einfache Analogie: Man stelle sich zwei Arten von Münzen vor: echte, die auf der einen Seite Kopf und auf der anderen Seite Zahl anzeigen, und falsche, die auf beiden Seiten Kopf oder auf beiden Seiten Zahl tragen. Wie kann man nun herausfinden, ob eine Münze, die flach auf einem Tisch liegt, echt oder falsch ist? In der klassischen Welt kann man trivialer Weise die Münze umdrehen und sich die Rückseite betrachten. Auf jeden Fall aber muss man die Münze zweimal betrachten: einmal von vorne und einmal von hinten.
Das entsprechende mathematische Problem ist die Aufgabe herauszufinden, ob eine unbekannte Funktion konstant ist oder ausgewogen. Im ersten Fall ergibt sie immer den Wert Null oder immer den Wert Eins, im zweiten Fall ergibt sie genauso oft Null wie Eins. Ein Quantencomputer löst dieses Problem erstaunlicherweise mit nur einem einzigen Funktionaufruf, d.h. ein Quantencomputer muss sich die Münze aus dem obigen Beispiel nur einmal betrachten.
Das Experiment
Im Berliner Experiment werden einzelne Photonen in ein Interferometer geschickt, das aus verschiedenen Komponenten, wie Strahlteilern und Spiegeln, besteht. Eine beliebige konstante oder ausgewogene Funktion kann formal durch Hinein- oder Herausklappen von optischen Verzögerungsplatten dargestellt werden.
Der Quantenalgorithmus wird ausgeführt, indem man genau ein Photon in das Interferometer schickt. Das Ergebnis der Rechnung ist ein einzelner Klick in einem der beiden Detektoren 1 oder 0 am Interferometerausgang (durch Halbkreise dargestellt). Wie erläutert, muss man den Algorithmus nur ein einziges Mal ausführen, um zu wissen, welche Funktion vorab eingestellt wurde.
Nach dieser ersten erfolgreichen Demonstration ist es nun das nächste Ziel der Berliner Forscher eine Quelle herzustellen, die nicht nur ein einziges, sondern eine beliebige Anzahl von identischen Photonen auf Kommando erzeugt. Mit solchen Quellen wäre es möglich, wesentlich komplexere Quantenalgorithmen zu demonstrieren. Erste Schritte in diese Richtung befinden sich bereits in Vorbereitung.
(Humboldt-Universität zu Berlin, 18.05.2006 – NPO)