Astronomie

Überschallknall im All

Astronomen entdecken eine der bisher größten intergalaktischen Schockwellen

Dieses Falschfarben-Komposit der Zentralregion des Stephans Quintett zeigt ein kompliziertes Geflecht aus Galaxien und intergalaktischem Medium. Das Muster entstand durch die Wechselwirkung der Galaxie NGC7318b (blaue Wolke rechts der Mitte) mit ihrer Umgebung: Das Milchstraßensystem rast mit einer Geschwindigkeit von 1000 Kilometern pro Sekunde in das intergalaktische Medium und erzeugt dadurch eine Schockwelle, die im Licht von Wasserstoffmolekülen grün leuchtet. Das Bild entstand durch die Überlagerung von Aufnahmen, die mit dem Observatorium auf dem Calar Alto in Spanien und dem Weltraumteleskop Spitzer gewonnen wurden. © NASA/JPL-Caltech

Astronomen haben in einer Galaxiengruppen eine gigantische Schockwelle aufgespürt, die größer ist als die Milchstraße. Mit dem NASA-Infrarotteleskop Spitzer untersuchte das internationale Team die Galaxiengruppe "Stephans Quintett" und identifizierte sie als Schauplatz einer gewaltigen kosmischen Kollision. Die Entdeckung der Schockwelle liefert den Forschern neue Einblicke in die Anfänge des Universums, als Verschmelzungen und Zusammenstöße von Galaxien an der Tagesordnung waren.

Seit Jahrzehnten beobachten Wissenschaftler die 300 Millionen Lichtjahre entfernte Galaxiengruppe namens "Stephans Quintett" mit optischen Teleskopen. Die ungewöhnliche Gestalt der Galaxien ließ sie vermuten, dass die Sternsysteme dort früher oft zusammengestoßen sind – und noch heute miteinander kollidieren. Vor kurzem haben Astronomen im Radio- und Röntgenbereich riesige Gasmengen zwischen den Galaxien entdeckt; diese Wolken bestehen hauptsächlich aus Wasserstoff und Helium, besitzen hundert Milliarden Sonnenmassen und enthalten mehr Gas als die Galaxien selbst.

Jetzt hat das Team aus deutschen, amerikanischen, australischen und chinesischen Forschern – zu ihm gehören Wissenschaftler des Max-Planck-Instituts für Kernphysik und des California Institute of Technology in Pasadena (USA) – das Weltraumteleskop Spitzer auf die Galaxiengruppe gerichtet und mit dem sehr empfindlichen Infrarot-Spektrometer des Instruments die Galaxie NGC 7318b unter die Lupe genommen. NGC 7318b bewegt sich sehr schnell auf die anderen Galaxien zu und erzeugt auf ihrem Weg durch das intergalaktische Gas eine gigantische Schockwelle – größer als unsere Milchstraße mit ihren 100.000 Lichtjahren Durchmesser.

Strahlung verrät Schockwelle

Die Schockwelle verriet sich durch eine starke Infrarotstrahlung. Sie stammt von Wasserstoffmolekülen, die bei der Kollision von Materie zum Leuchten angeregt werden. "Die Stärke der Strahlung und die Tatsache, dass das Gas derart durcheinander gewirbelt wird, war für uns eine große Überraschung", sagt Gruppenleiter Philip Appleton vom California Institute of Technology in Pasadena. "Wir erwarteten die spektrale Zusammensetzung von Staubkörnchen. Stattdessen sahen wir nichts außer einem Spektrum von Wasserstoffmolekülen, wie es im Labor zu sehen ist. So etwas haben wir in einem Galaxiensystem noch nie zuvor beobachtet."

Mit dem Spektrometer identifizierten die Wissenschaftler in Stephans Quintett eine ungewöhnlich "verschmierte" Linie – die breiteste, die für heißen Wasserstoff jemals gefunden wurde. Aus ihr ließ sich eine Geschwindigkeit von 870 Kilometern pro Sekunde hin – das Gas bewegt sich also hundertmal schneller als der Schall in Luft (330 Meter pro Sekunde). "Anscheinend entstehen Wasserstoffmoleküle entweder in der Schockwelle oder hinter ihr, ähnlich Wassertropfen, die sich hinter einem Flugzeug bilden, das die Schallmauer durchbricht. Nur passiert das hier in kosmischen Dimensionen und bei einer Geschwindigkeit von Mach 100 oder mehr", sagt Richard Tuffs von der Astrophysik-Abteilung des Max-Planck-Instituts für Kernphysik in Heidelberg.

Modell des frühen Universums

Eine der häufigsten Arten von Schockwellen ist der Überschallschock, der von Düsenflugzeugen wie diesem Jet der US Navy bei einem sehr schnellen Flug übers Meer erzeugt wird. Wenn ein Überschallflugzeug die Schallmauer durchbricht, holt es seine eigenen Schallwellen ein. Diese werden zu einer kegelförmigen "Schockwelle" zusammengedrückt, die sich nach außen in Richtung Boden bewegt und dabei den bekannten Überschallknall erzeugt. Der Überschallschock ist für uns unsichtbar, aber bei hoher Luftfeuchtigkeit kommt es vor, dass Dampf zu Wassertropfen kondensiert und dabei eine sichtbare, kegelförmige Wolke am Heck des Düsenflugzeugs bildet. © US Navy

Die Beobachtungen geben Einblick in die Vergangenheit des Alls. Damals kollidierten und verschmolzen die Galaxien noch viel häufiger als in der Gegenwart. "So bietet uns eine benachbarte Galaxiengruppe, die von einer dichten Gaswolke verhüllt ist, ein Modell des Universums, wie es vor zehn Milliarden Jahren ausgesehen hat", sagt Cristina Popescu, die andere Autorin aus dem Heidelberger Max-Planck-Institut. Zu dieser Zeit waren bereits die ersten Galaxien entstanden, ihre Dichte und die des Weltraums waren allerdings viel höher als heute. "In dieser Hinsicht gleichen unsere Beobachtungen einer Reise mit der Zeitmaschine", so Popescu.

Die neuen, von der Fachzeitischrift Astrophysical Journal zur Publikation angenommenen Ergebnisse deuten außerdem darauf hin, dass die helle Infrarotstrahlung weit entfernter Galaxien nicht nur von den Sternen ausgeht, sondern auch von gewaltigen Schockwellen im Gas kollidierender Galaxien erzeugt wird. Übrigens wird unsere Milchstraße in zwei Milliarden Jahren voraussichtlich mit dem Andromeda-Nebel zusammenstoßen und dabei selbst eine kosmische Schockwelle erzeugen.

Das Spitzer Weltraumteleskop wird vom NASA Jet Propulsion Laboratory (JPL) gemanagt. Die wissenschaftliche Datenauswertung erfolgt am Spitzer Science Center des California Institute of Technology (CalTech) in Pasadena, USA.

(MPG, 06.03.2006 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Big Eyes - Riesenteleskope und die letzten Rätsel im Kosmos

Bücher zum Thema

Das Universum - Eine Reise in die Unendlichkeit von Serge Brunier

Was zu entdecken bleibt - Über die Geheimnisse des Universums, den Ursprung des Lebens und die Zukunft der Menschheit von John R. Maddox

Der Weltraum - Planeten, Sterne, Galaxien von Heather Couper & Nigel Henbest

Top-Clicks der Woche