Botanik

Neue Pflanzenproteine am Drücker

Molekulare Schalter in pflanzlichen Signalwegen identifziert

Auf die Zelle einwirkende Signale werden über Rezeptoren der Zellmembran an Guaninnukleotid-Austauschfaktoren (GEFs) weitergeleitet. Diese katalysieren den Austausch von GDP gegen GTP bei den Rop-Proteinen und überführen diese dadurch in den aktiven Zustand. Aktive Rop-Moleküle wiederum interagieren mit Effektoren, die zahlreiche Lebensprozesse der Pflanze beeinflussen. Im Hintergrund ist eine Blüte der Pflanze Arabidopsis thaliana zu sehen, der Pflanze, die für die vorliegende Studie verwendet wurde. © Christoph Thomas, MPI für molekulare Physiologie

Wachstum, Entwicklung, Fortpflanzung und Anpassung – entscheidend für diese lebenswichtigen Funktionen bei Pflanzen und allen anderen Lebewesen sind molekulare Schalter. Wissenschaftler haben jetzt jene Proteine identifziert, die diese molekularen Schalter aktivieren und lebenswichtige pflanzenphysiologische Prozesse in Gang setzen. Dabei stellte sich heraus, dass sich diese Pflanzenproteine deutlich von ihren Gegenparts in Tieren und Pilzen unterscheiden und sich vermutlich erst später in der Evolution herausgebildet haben.

Das Leben einer Pflanze wird von sehr vielen unterschiedlichen Reizen aus ihrem Körperinneren sowie der Umgebung beeinflusst. Ein komplexes System zur Signalaufnahme registriert diese eigenen und fremden Signale und verarbeitet diese in biochemischen Reaktionsketten, die das ursprüngliche Signal kaskadenartig weiterleiten, hochgradig verstärken und schließlich ganz spezifische Reaktionen in einer Zelle auslösen. Als Kontrollpunkte dienen in vielen Signalwegen der Pflanze kleine Eiweißmoleküle, die Rop-Proteine. Sie vermitteln als molekulare Schalter die Signalübertragung.

Schalterproteine normalerweise ähnlich bei allen Lebewesen

Ähnliche Schalterproteine kennt man auch von Tieren und Pilzen. Diese so genannten Rho-Proteine sind eine Untergruppe der Ras-Superfamilie kleiner GTP-bindender Proteine (G-Proteine), die eine Vielzahl von physiologischen Prozessen beeinflussen. Ihre Schalterfunktion beruht darauf, dass entweder das Nukleotid GDP oder GTP an sie gebunden ist. Im GDP-gebundenen Zustand sind die Proteine inaktiv. Im GTP-gebundenen, aktiven Zustand binden sie an Effektorproteine und leiten auf diese Weise die Signale weiter.

Untersuchungen der letzten Jahre hatten gezeigt, dass die pflanzlichen Schalterproteine (Rops) als Mitglieder der Rho-Familie eine zentrale Rolle in physiologischen Prozessen spielen, da sie das pflanzliche Wachstum und die Entwicklung beeinflussen, die Befruchtung steuern und die Reaktionen der Pflanze auf zahlreiche Umwelt- und Stressfaktoren (z. B. Schädlingsbefall) kontrollieren. Die dabei auf die Pflanze einwirkenden Signale werden häufig durch Rezeptor-Proteine an der Zelloberfläche wahrgenommen und in das Zellinnere übermittelt. Diese Signale können dort jedoch nur dann einen Effekt bewirken, wenn der molekulare Schalter durch GEF-Proteine betätigt, also aktiviert wird. Lange Zeit war jedoch völlig unklar, wie die Rop-Proteine aktiviert werden, da in Pflanzen die notwendigen Austauschfaktoren für Rops nicht bekannt waren.

Keine Übereinstimmung

Forscher des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben nun das Rätsel der Rop-Aktivierung gelöst und eine neue Familie von Proteinen in Pflanzen identifiziert, die als Rop-spezifische Austauschfaktoren (RopGEFs) funktionieren. Obwohl G-Proteine und ihre Regulatoren im allgemeinen als ähnliche (homologe) Proteine in Tieren, Pilzen und Pflanzen zu finden sind, weisen die pflanzlichen RopGEF-Proteine interessanterweise keinerlei Übereinstimmung mit Proteinen aus den anderen Reichen höherer Organismen auf.

Ihnen gegenüber stehen die völlig anderen RhoGEFs der Tiere und Pilze, die wiederum keine Entsprechung im Pflanzenreich finden. Diese Tatsache lässt die Dortmunder Arbeitsgruppe vermuten, dass sich die GEFs als Aktivatoren für die Rho-Familie kleiner GTPasen während der Evolution als „späte Erfindung“ erst nach der Trennung des Pflanzenreichs von Pilzen und Tieren entwickelt haben.

Bei weiteren Vergleichen der neuen RopGEFs mit Datenbankeinträgen stellten die Wissenschaftler weiterhin fest, dass einige Vertreter dieser Proteinfamilie direkt an Rezeptorproteine binden. Die Forscher aus Dortmund schlagen daher für Rop-abhängige Prozesse in Pflanzen eine geschlossene Reaktionskette vor: Danach können eingehende Signale über membranständige Rezeptoren wahrgenommen und an RopGEFs weitergeleitet werden, die ihrerseits das Schalterprotein Rop aktivieren und auf diese Weise multiple Signalketten in Gang setzen.

Die Ergebnisse der Dortmunder Studie tragen entscheidend zum Verständnis der pflanzlichen Signalübertragung bei und bieten möglicherweise neue Ansätze, in lebenswichtige Prozesse von Pflanzen, wie zum Beispiel in die Abwehr von Schädlingen, regulierend einzugreifen.

(MPG, 08.07.2005 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Schriftzeichen

Ältestes Alphabet der Welt entdeckt?

Erstes Porträt eines extragalaktischen Sterns

Baby-Säbelzahnkatze im Permafrost entdeckt

Auch erwachsene Schimpansen spielen noch miteinander

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Phytohormone - Überlebenswichtige Botenstoffe im Pflanzenreich

Bücher zum Thema

keine Buchtipps verknüpft

Top-Clicks der Woche