Astronomie

Gamma-Blitz trifft Erde

Bisher stärkster Strahlenausbruch eines Magnetars registriert

Magnetar als Ursprung von Gammablitzen? © MPE

Am 27. Dezember 2004 um 22:30 Uhr mitteuropäischer Zeit wurde die Erde von einer gewaltigen Wellenfront von Gamma- und Röntgenstrahlung getroffen. Es war der stärkste Fluss von hochenergetischer Gammastrahlung, der jemals gemessen wurde. Das hat jetzt ein Team um Roland Diehl und Giselher Lichti vom Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching berechnet.

Das Unglaubliche an dieser Entdeckung ist die Entstehung dieser Strahlung: Sie stammt von einem winzigen Himmelskörper mit höchster Dichte, einem Neutronenstern, einem so genannten Magnetar, mit einem extrem starken Magnetfeld, der sich auf der anderen Seite unserer Milchstraße in etwa 50.000 Lichtjahren Entfernung befindet. Die Garchinger Astrophysiker sind sich sicher, dass das Ereignis ein völlig neues Licht auf die Physik von Magnetaren werfen wird und dazu beitragen wird, ein seit langem existierendes Rätsel um kosmische Gamma – Strahlenausbruch lösen zu können.

Neutronensterne der besonderen Art

Magnetare sind Neutronensterne, deren Magnetfelder das 1.000fache des bei Neutronensternen üblichen Wertes aufweisen. Man schätzt, dass etwa zehn Prozent aller Neutronensterne zu dieser Sternklasse zählen. Neutronensterne entstehen beim Kollaps von Sternen einer bestimmten Gewichtsklasse bei einer Supernovaexplosion. Sie haben einen typischen Durchmesser von etwa 20 Kilometern und ein extrem starkes Magnetfeld der Größenordnung 1.012 Gauß. Das um den Faktor 1.000 stärkere Magnetfeld eines neugeborenen Magnetars entsteht innerhalb weniger Sekunden durch einen komplexen Dynamoeffekt in seinem Inneren, verursacht durch Konvektion und schnelle Rotation.

Strahlenfront durchdrang alles

Die spektakuläre Wellenfront wurde vom INTEGRAL – Satelliten aus gemessen, von einem der empfindlichsten Gammaburstdetektoren, der zur Zeit die Erde umkreist. Doch nicht nur der INTEGRAL – Satellit zeichnete das Ereignis auf. Die Wellenfront wurde noch von 13 anderen Röntgen- und Gammadetektoren im Weltraum gemessen, die zwischen Erde und Saturn Messungen durchführen. „Sogar der russische Coronas-F Satellit sah diesen Burst, obwohl er sich zur Zeit des Ereignisses hinter der Erde befand, er die direkte Strahlung von der Quelle also gar nicht messen konnte“, erklärt Giselher Lichti. „Die Analyse der Ankunftszeiten ergab, dass das russische Instrument Gammastrahlen gemessen hatte, die von der Mondoberfläche reflektiert worden waren.“

„Der Ausbruch des Neutronensterns begann mit der Emission von energiereicher Gammastrahlung, die nur einen Bruchteil einer Sekunde dauerte, aber den Großteil der emittierten Energie enthielt. Dieser Ausbruch war gefolgt von einer schwächeren Gammaemission, die mehr als sechs Minuten andauerte und deren Intensität mit einer Periode von 7,56 Sekunden oszillierte. Diese Oszillation wird mit der bekannten Rotationsperiode des Neutronensterns in Verbindung gebracht“, erklärt Andreas von Kienlin.

„Unsere Messungen zeigten, dass die Energieverteilung der Gammaquanten des Ausbruchs charakteristisch für ein ultra-heißes thermisches Plasma ist“, sagt Andreas von Kienlin. „Genau das, was wir von einem Magnetar erwarten, der leichte hochenergetische Teilchen ausstößt. Die meisten dieser Teilchen zerstrahlten offensichtlich in reine Gammastrahlen, die dann in den interstellaren Raum entwichen.“

Die oszillierende Gammaemission stammt offenbar von übriggebliebenen Elektronen und Positronen, die im Magnetfeld des Magnetars eingeschlossen sind, vermuten die Astrophysiker. Die Theorie sagt vorher, dass solch ein heißer eingeschlossener Feuerball innerhalb von Minuten schrumpfen und verdampfen sollte. Seine Helligkeit scheint zu oszillieren, weil der Feuerball über das Magnetfeld an die Oberfläche des rotierenden Neutronensterns gebunden ist.

Rätselhafte Weltraumblitze

Die riesige Energiemenge des Ausbruchs vom 27. Dezember 2004 legt eine neue Lösung für ein altes Problem der Gammastrahlen – Burstastronomie nahe: Es handelt sich um die Frage nach den Quellen dieser sogenannten „Short-Duration Gamma-Ray Bursts“. In den letzten 35 Jahren hat man Hunderte von kurzen, weniger als zwei Sekunden dauernden mysteriösen Blitzen von hochenergetischer Strahlung aus den Tiefen des Raumes gemessen, ohne dass man weiß, woher diese gemessene Strahlung kommt.

Eine Hypothese besagt, dass diese Strahlung bei der Verschmelzung von zwei kompakten Objekten, zum Beispiel von zwei Neutronensternen oder einem Neutronenstern mit einem Schwarzen Loch, entstehen könnte. Die neuen Beobachtungen lassen nun eine weitere Interpretation der Beobachtungen zu: Es könnte sich dabei zum Teil um Magnetar-Ausbrüche wie dem am 27. Dezember beobachteten handeln.

Verdrillte Magnetfelder als Auslöser

Wie kann man sich nun den enormen Energieausstoß von einem solchen Magnetar erklären? Ein Magnetar hat tief in seinem Inneren ein stark verdrilltes Magnetfeld, dessen Magnetfeldlinien sich wie eine Uhrfeder um die Rotationsachse winden. Sein äußeres Magnetfeld jedoch ähnelt mehr oder weniger dem eines Dipols eines Stabmagneten.

Das verdrillte innere Magnetfeld enthält den größten Teil der magnetischen Energie des Sterns. Dieses Magnetfeld übt eine Kraft auf die ein Kilometer dicke Kruste des Sterns mit einem Radius von zehn Kilometer aus und verschiebt diese. Das hat zum einen zur Folge, dass sich das äußere Magnetfeld verdrillt und zum anderen, dass starke Ladungsströme um den Stern fließen. Wenn sich die Magnetfelder immer stärker verdrillen, dann lassen diese Ströme den Stern hell im niederenergetischen Gammabereich aufscheinen.

Das scheint auch mit dem Magnetar SGR 1806-20 passiert zu sein. Von März 2004 bis zum Ausbruch im Dezember hat SGR 1806-20 viele einzelne schwache Ausbrüche gezeigt, die auf eine Verschiebung der Kruste hindeuteten. SGR 1806-20 wurde also immer heller im Gammalicht, mit Emission von immer mehr harten Gammaphotonen und einer stärkeren Abbremsung. Alle diese Messungen deuteten darauf hin, dass sich das äußere Magnetfeld mehr und mehr verdrillte. In dem Modell für den Ausbruch vom 27. Dezember von Duncan und Thompson wurde die Verdrillung so stark, dass der Stern mit seiner Kruste instabil wurde. Die Spannung des äußeren Magnetfelds hat sich dann in einem enormen Ausbruch entladen und es dann in einem niedrigeren und unverdrillten Zustand neu angeordnet.

„Für das Leben auf der Erde bestand durch den Magnetar-Ausbruch jedoch keine Gefahr, da die Atmosphäre für diese Art von Strahlung undurchsichtig ist. Diese Strahlung ionisiert die Atome der Hochatmosphäre und wird dabei absorbiert.“, gibt Giselher Lichti Entwarnung.

(MPG, 21.02.2005 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Das Universum nebenan - Revolutionäre Ideen in der Astrophysik von Marcus Chown

Top-Clicks der Woche