Technik

Flüssigkristalle für schnelle Schaltprozesse

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Ein internationales Team hat eine neu synthetisierte flüssigkristalline Verbindung untersucht, die Anwendungen in der Optoelektronik verspricht. Einfache stäbchenförmige Moleküle mit nur einem einzigen Chiralitätszentrum ordnen sich bei Raumtemperatur von selbst zu spiralförmigen Strukturen. Durch resonante Röntgenstreuung an BESSY II konnten die Forscher*innen nun die Ganghöhe der Helixstruktur bestimmen. Mit nur etwa 100 Nanometern ist diese extrem kurz, was besonders schnelle Schaltprozesse ermöglichen könnte.

Flüssigkristalle sind zwar nicht fest, sondern flüssig, aber einige ihrer physikalischen Eigenschaften sind dennoch richtungsabhängig wie in einem Kristall. Das liegt daran, dass sich ihre Moleküle in bestimmten Mustern anordnen können. Zu den bekanntesten Anwendungen gehören Flachbildschirme und digitale Displays. Sie basieren auf Pixeln aus Flüssigkristallen, deren optische Eigenschaften durch elektrische Felder geschaltet werden können.

Einige Flüssigkristalle bilden so genannte cholesterische Phasen: Die Moleküle ordnen sich zu schraubenförmigen Strukturen an, die durch eine Steigung gekennzeichnet sind und sich entweder nach rechts oder nach links drehen. „Die Steigung der cholesterischen Spiralen bestimmt, wie schnell sie auf ein angelegtes elektrisches Feld reagieren“, erklärt Dr. Alevtina Smekhova, Physikerin am HZB und Erstautorin der Studie, die jetzt in Soft Matter veröffentlicht wurde.

Darin untersuchte sie mit Partnern der Akademien der Wissenschaften in Prag, Moskau und Chernogolovka eine in Prag entwickelte flüssigkristalline cholesterische Verbindung namens EZL10/10. „Solche cholesterischen Phasen werden normalerweise von Molekülen mit mehreren chiralen Zentren gebildet, aber hier hat das Molekül nur ein chirales Zentrum“, erklärt Smekhova. Es handelt sich um eine einfache Molekülkette mit einer Laktateinheit.

An BESSY II hat das Team diese Verbindung nun mit weichem Röntgenlicht untersucht und die Steigung und räumliche Anordnung der Spiralen bestimmt. Aus den Messdaten ermittelten sie eine Ganghöhe von 104 Nanometern! Das ist doppelt so kurz wie bei bisher bekannten cholesterischen Phasen in Flüssigkristallen. Weitere Analysen zeigten, dass die cholesterischen Spiralen in diesem Material Domänen mit charakteristischen Längen bilden.

„Diese sehr kurze Ganghöhe macht das Material einzigartig und vielversprechend für optoelektronische Bauelemente mit sehr kurzen Schaltzeiten“, betont Smekhova. Darüber hinaus ist die EZ110/10-Verbindung thermisch und chemisch stabil und kann leicht weiter variiert werden, um Strukturen mit maßgeschneiderten Ganghöhen zu erhalten. (Soft Matter, 2021; doi: 10.1039/D1SM01543E)

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Schriftzeichen

Ältestes Alphabet der Welt entdeckt?

Erstes Porträt eines extragalaktischen Sterns

Baby-Säbelzahnkatze im Permafrost entdeckt

Auch erwachsene Schimpansen spielen noch miteinander

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

keine Dossiers verknüpft

Bücher zum Thema

keine Buchtipps verknüpft

Top-Clicks der Woche