Chemie

Für eine kostengünstigere Wasserstoff-Produktion

Gesellschaft Deutscher Chemiker e.V.

Die mit Strom aus erneuerbaren Energiequellen angetriebene elektrolytische Wasserstoff-Erzeugung wird als ein umweltfreundlicher Weg zur Linderung der globalen Klima- und Energieproblematik angesehen. In der Zeitschrift Angewandte Chemie stellt ein Forschungsteam jetzt ein neuartiges kostengünstiges Elektrodenmaterial vor, das eine hocheffiziente, energiesparende Wasserstoff-Produktion in Aussicht stellt: poröse phosphorisierte CoNi2S4-Dotter/Schale-Nanokugeln.

Leider verlaufen beide Teilreaktion der Wasserelektrolyse – Wasserstoff- und Sauerstoff-Bildung – nur langsam und benötigen viel Strom. Katalytisch wirksame Elektroden, vor allem auf der Basis von Edelmetallen, können die elektrochemischen Prozesse beschleunigen und ihre Energieeffizienz verbessern. Einer Anwendung im großen Maßstab stehen jedoch die erheblichen Kosten, begrenzten Ressourcen und mangelnde Stabilität im Weg. Alternativen auf Basis häufig vorkommender, kostengünstiger Metalle funktionieren dagegen meist nicht zufriedenstellend für beide Teilreaktionen.

Das Team um Shuyan Gao (Henan Normal University, China) und Xiong Wen (David) Lou (Nanyang Technological University, Singapur) hat jetzt ein neuartiges kostengünstiges multifunktionales Elektrodenmaterial auf Basis von Kobalt (Co) und Nickel (Ni) für eine effiziente elektrokatalytische Wasserstoff-Produktion entwickelt. Zur Herstellung werden Nanokügelchen aus Kobalt-Nickel-Glycerat einer kombinierten hydrothermischen Sulfidierung und einer Gasphasen-Phosphorisierung unterzogen. Dabei entstehen sogenannte Dotter/Schale-Nanopartikel aus Phosphor-dotiertem Kobalt-Nickel-Sulfid (P-CoNi2S4). Es handelt sich dabei um winzige Kügelchen mit einem kompakten Kern und einer porösen Hülle, zwischen denen sich ein Leerraum befindet – ähnlich einem Ei, dessen Dotter von Eiweiß umhüllt ist und daher die Schale nicht berührt.

Die Phosphor-Dotierung erhöht den Anteil an Ni3+ gegenüber Ni2+ in den hohlen Partikeln und sorgt für einen schnelleren Ladungstransfer, die elektrokatalytischen Reaktionen laufen rascher ab. Das Material kann sowohl als Anode als auch als Kathode eingesetzt werden und zeigt eine hohe Aktivität und Beständigkeit bei der Wasserstoff- und Sauerstofferzeugung der Wasserelektrolyse.

Um die Gesamtspannung der Elektrolyse-Zelle zu senken, wird außerdem nach hybriden Elektrolyse-Konzepten gesucht. So könnte die Wasserstoff-erzeugende Reaktion statt an die Sauerstoff-Erzeugung an die Oxidation von Harnstoff gekoppelt werden, die deutlich weniger Energie benötigt. Als Harnstoff-Quelle könnten Abwässer industrieller Synthesen und Sanitärabwässer dienen. Auch für diese Teilreaktion sind die neuen Nanopartikel sehr gut geeignet.

Sowohl für die Elektrolyse von Wasser als auch von Harnstoff benötigen sie nur eine vergleichsweise geringe Zellspannung (1,544 V bzw. 1,402 V bei 10 mA cm–2 über 100 Stunden). Damit sind die neuen bimetallischen Dotter/Schale-Partikel den meisten bekannten Nickel-Sulfid- und sogar Edelmetall-basierten Elektrokatalysatoren überlegen und stellen einen interessanten Ansatz für die elektrochemische Wasserstoff-Produktion, aber auch für die Behandlung Harnstoff-haltiger Abwässer dar. (Angewandte Chemie, 2021; doi: 10.1002/ange.202108563)

Quelle: Gesellschaft Deutscher Chemiker e.V.

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Wasserstoff und Brennstoffzellen - Die Technik von morgen von Sven Geitmann

Erneuerbare Energie - von Thomas Bührke und Roland Wengenmayr

Unendliche Weiten - Kreuz und quer durchs Chemie-Universum - von Thisbe K. Lindhorst, Hans-Jürgen Quadbeck-Seeger und der Gesellschaft Deutscher Chemiker

Top-Clicks der Woche