Maschinelles Lernen spielt eine immer wichtigere Rolle in der biomedizinischen Forschung. Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) entwickelten nun eine neue Methode, um Subtypen von Krankheiten aus molekularen Daten zu extrahieren. Diese kann die Erforschung großer Patientengruppen in Zukunft unterstützen.
Anhand der Symptome definieren und diagnostizieren Ärztinnen und Ärzte heutzutage die meisten Krankheiten. Das muss aber nicht bedeuten, dass Patientinnen und Patienten mit ähnlichen Symptomen auch die gleiche Krankheitsursache oder gleiche molekulare Veränderungen aufweisen. In der Biomedizin spricht man dabei oft von molekularen Mechanismen einer Krankheit, also wie sich die Regulation von Genen, Proteinen oder Stoffwechselwegen bei dem Ausbruch einer Krankheit ändern. Das Ziel von stratifizierter Medizin ist es, Erkrankte auf molekularer Ebene in unterschiedliche Subtypen einzuteilen, um ihnen eine gezieltere Behandlung zukommen zu lassen.
Um Krankheits-Subtypen aus großen Patientendaten zu identifizieren, können neue Algorithmen aus dem Bereich des maschinellen Lernens helfen. Diese haben das Ziel, selbstständig Muster und Zusammenhänge von umfangreichen klinischen Messungen zu erkennen. Die Nachwuchsforschungsgruppe LipiTUM um Gruppenleiter Dr. Josch Konstantin Pauling vom Lehrstuhl für Experimentelle Bioinformatik hat einen solchen Algorithmus entwickelt.
Komplexe Analysen via automatisierter Web-Anwendung
Ihre Methode vereint die Resultate von bestehenden Algorithmen, um genauere und robustere Vorhersagen zu klinischen Subtypen machen zu können. Dadurch werden die Vorzüge und Eigenschaften mehrerer Algorithmen vereint und die aufwändige Anpassung entfällt. “Das erleichtert die Anwendung in der klinischen Forschung deutlich”, berichtet Dr. Pauling. „Aus diesem Grund haben wir auch eine Web-basierte Anwendung entwickelt, auf der die Analyse molekularer Daten ohne bioinformatisches Vorwissen online vorgenommen werden kann.”