Ein deutsch-französisches Forscherteam hat ein neues Modell aufgestellt, das erklärt, wie sich in Hochtemperatursupraleitern der sogenannte „Pseudogap“-Zustand bildet. Die Berechnungen sagen zwei gleichzeitig existierende Elektronenordnungen voraus. Supraleiter verlieren ab einer bestimmten Temperatur ihren elektrischen Widerstand und können Strom verlustfrei leiten.
„Es ist nicht auszuschließen, dass die neue ‚Pseudogap‘-Theorie auch die lang ersehnte Begründung liefert, warum bestimmte keramische Kupferoxidverbindungen im Gegensatz zu herkömmlichen metallischen Supraleitern bei so ungewöhnlich hohen Temperaturen ihren elektrischen Widerstand verlieren“, sagen Konstantin Efetov und Hendrik Meier vom Lehrstuhl für Theoretische Festkörperphysik der Ruhr-Universität Bochum. Die Erkenntnisse erzielten sie in enger Kooperation mit Catherine Pépin vom Institut für Theoretische Physik in Saclay bei Paris. Das Team berichtet in der Zeitschrift „Nature Physics“.
Sprungtemperatur bei keramischen Supraleitern deutlich höher
Supraleitung tritt nur bei sehr niedrigen Temperaturen unterhalb der sogenannten Sprungtemperatur auf; in metallischen Supraleitern liegt diese nahe dem absoluten Nullpunkt von 0 Grad Kelvin; das entspricht etwa -273 Grad Celsius. Kristalline Keramikmaterialien können jedoch bei Temperaturen bis zu 138 Grad Kelvin supraleitend sein. Forscher rätseln seit 25 Jahren, was die physikalischen Grundlagen dieser Hochtemperatursupraleitung sind.
„Pseudogap“: Energielücke oberhalb der Sprungtemperatur
Im supraleitenden Zustand wandern Elektronen zu zweit in sogenannten Cooper-Paaren durch das Kristallgitter eines Materials. Um ein Cooper-Paar aufzubrechen, sodass zwei freie Elektronen entstehen, braucht es eine bestimmte Energiemenge. Dieser Unterschied in der Energie der Cooper-Elektronen und der freien Elektronen wird Energielücke genannt. In supraleitenden Kupferoxidverbindungen, den Cupraten, tritt eine ähnliche Energielücke unter bestimmten Umständen auch oberhalb der Sprungtemperatur auf – das „Pseudogap“ oder die Pseudoenergielücke. Kennzeichnend für das „Pseudogap“ ist, dass die Energielücke nur von Elektronen mit bestimmten Geschwindigkeitsrichtungen wahrgenommen wird. Das Modell des deutsch-französischen Teams erlaubt jetzt neue Einblicke in das physikalische Innenleben des „Pseudogap“-Zustands.