Forschern des IMP gelang es in Kollaboration mit der TU Wien, ein neues Mikroskopie-Verfahren zu entwickeln. Dieses erlaubt es, mit nur einer einzigen Messung und somit ohne Scan-Vorgang ein dreidimensionales Bild der untersuchten Probe zu erzeugen. Die neue Lichtmikroskopie-Technik beruht darauf, dass Positionsinformation in Farbinformation des Lichtspektrums umgewandelt und gemessen wird. Das innovative Verfahren mit großem Anwendungs-Potenzial wird diese Woche online in PNAS veröffentlicht.
Für viele Studien im Bereich der Naturwissenschaften ist es wichtig, ein stark vergrößertes und möglichst genaues Abbild einer zu untersuchenden Probe – beispielsweise einer Zelle – zu erhalten. Um kleinste Strukturen oder Objekte zu analysieren, werden heute je nach Fragestellung und Probenaufbereitung verschiedene Mikroskopie-Verfahren eingesetzt. Ein Schwachpunkt vieler gängiger Techniken ist die Notwendigkeit, eine Probe etliche Male scannen zu müssen, um ein Bild mit Tiefenwirkung zu erzeugen. Vor allem für empfindliche und dynamische Proben ist dies ein Problem. Katrin Heinze und Kareem Elsayad, federführende Wissenschaftler der PNAS-Publikation, gelang es im Rahmen ihrer Arbeit am IMP, diese Schwierigkeit zu umgehen.
Präzise Bilder empfindlicher und dynamischer Proben
Zur mikroskopischen Analyse fixierter oder lebender Zellen bediente sich Elsayad einer speziellen Form der Lichtmikroskopie, der Fluoreszenz-Mikroskopie. Dabei werden Fluoreszenzfarbstoffe, sogenannte Fluorophore, mit Licht einer Wellenlänge angeregt und strahlen dadurch dann selbst Licht einer anderen Wellenlänge ab. Für seinen Aufbau verwendete der Forscher aus der Arbeitsgruppe von Katrin Heinze eine sogenannte biokompatible Nanostruktur: Einen Objektträger aus Quarz mit einer dünnen Beschichtung aus Metall und Dielektroden. Die verwendete Probe markierte er mit Fluorophoren und positionierte sie darüber.