Die Vision des Physikers Richard Feynman klingt auch heute noch atemberaubend: Es sei möglich, den Inhalt sämtlicher Buchtitel der Welt − Feynman schätzte ihre Zahl Ende der 1950er-Jahre auf 24 Millionen − in einem Staubkorn zu speichern, das gerade noch mit bloßem Auge sichtbar ist. Dafür sei es allerdings nötig, ein digitales Bit, also die kleinste Speichereinheit, die die Werte Null oder Eins aufnehmen kann, auf einen Platz zu zwängen, der dem Volumen von nur 100 Atomen entspricht.
Gängige Magnetspeicher gelangen an Grenzen
Vielleicht fühlen sich die Ingenieure von dieser Vorstellung angespornt. Jedenfalls packen sie seither immer mehr Daten auf Speichermedien wie Festplatten: Ihre Speicherdichte, also die Anzahl der Bits pro Quadratzentimeter, verdoppelt sich alle 18 Monate. Vor 30 Jahren konnte man auf eine Festplatte etwa zehn Megabyte ablegen, heute passen darauf 100.000-mal mehr Daten. Ein Bit belegt auf einer Terabyte-Festplatte noch einige Hunderttausend Atome. Wenn Bits und Bytes weiterhin im gleichen Tempo schrumpfen wie bisher, wird Feynmans Traum in etwa zehn Jahren in Erfüllung gehen.
Doch die Reise in die Nanowelt, in der ein paar hundert Atome Informationen speichern oder sie verarbeiten, wird immer beschwerlicher. So lassen sich magnetische Speichermedien wie Festplatten nicht beliebig weit miniaturisieren. Magnetische Schichten an ihrer Oberfläche enthalten Speicherzellen, die je ein Bit aufnehmen. Ob die Zelle eine Null oder eine Eins darstellt, entscheidet ihre Magnetisierung.
Diese ergibt sich aus der Summe der magnetischen Momente, welche die einzelnen Atome in der Zelle tragen: Jedes Atom wirkt wie ein winziger Stabmagnet, dessen Richtung und Stärke durch das magnetische Moment angegeben wird. Die magnetischen Momente der Atome ordnen sich in Speicherpunkten entweder ferromagnetisch oder antiferromagnetisch an, richten sich also alle parallel oder abwechselnd in die eine und in die entgegengesetzte Richtung aus.