Elektrische Synapsen (Gap Junctions) treten im zentralen Nervensystem zwischen Nervenzellen und zwischen den ihnen funktionell zugeordneten Gliazellen auf und bilden jeweils ein funktionelles Netzwerk. Sie können elektrische Impulse zwischen Nervenzellen sehr schnell ohne Botenstoffe weiterleiten.
Ihre Struktur ist auf den ersten Blick sehr einfach: Zwei Halbkanäle, die aus sechs Proteinen, den Connexinen, aufgebaut sind, paaren sich spiegelbildlich miteinander und verbinden so zwei aneinander grenzende Zellen. Durch diese Kanäle tauschen die Zellen Ionen und Stoffwechselprodukte aus. Doch die simple molekulare Architektur entpuppt sich als ein raffiniertes System von Membrankanälen, das den chemischen Synapsen in seiner Leistung nicht nachsteht.
Wissenschaftler der Ruhr-Uni Bochum konnten zeigen, dass die im Hirngewebe auftretenden elektrischen Synapsen aus unterschiedlichen Proteinen einer Proteinklasse (Isoformen) der Connexine bestehen. Daraus ergeben sich für einzelne Nervenzellgruppen sowie Gliazellen ganz bestimmte Muster ihrer Kanalproteine. Den Gap Junction-Kanälen lassen sich je nach Connexintyp verschiedene Funktionen zuordnen: Die Kanäle sind selektiv bezüglich der Ladung und der
Größe der sie passierenden Substanzen.
Auch der pH-Wert im Gewebe und das elektrische Potential über den Zellmembranen wirken sich unterschiedlich auf die Kinetik des Öffnens und Schließens der Kanäle aus. Von über 20 Gap Junction- Proteinen haben wir allein zehn im zentralen Nervensystem gefunden. Diese molekulare Variabilität deutet darauf hin, dass Gap Junctions viele verschiedene Funktionen erfüllen.
Vor fast fünfzehn Jahren haben die Forscher beobachtet, dass unterschiedliche Kanalproteine während der Gehirnentwicklung auftreten und schon damals deren Einfluss auf Differenzierungsprozesse vermutet. Mit modernen Genanalyseverfahren (DNA-Microarray Technologie) konnten wir dies nun bestätigen. Gap Junctions scheinen auch krankhafte Prozesse im zentralen Nervensystem massiv zu beeinflussen. Dies gilt nicht nur für Änderungen der neuronalen Erregbarkeit wie die Epilepsie, sondern auch für durch entzündliche Prozesse oder Hirninfarkt zerstörtes Nervengewebe.
Elektrische Synapsen beeinflussen hier offenbar massiv das Ausmaß der Schädigung in glialen Zellen. Wir versuchen nun, Gap Junctions im Nervensystem spezifisch zu blockieren, um durch ein zeitweises Ausschalten dieser Kontakte die Infarktgröße bei Schlaganfall zu reduzieren. In jüngsten Untersuchungen ist es uns gelungen, mit bestimmten blockierenden Substanzen Nervengewebe zu schützen und den neuronalen Zelltod nach einem Infarkt einzuschränken.
Stand: 17.12.2004