Anschaulich lässt sich der Higgs-Mechanismus durch folgende Analogie beschreiben: Betrachten wir die Bewegungen eines Menschen, der der Tristesse des deutschen Winters entfliehend, seine Runden durch eine Poollandschaft in Südspanien dreht – korrekter gehen wir davon aus, dass der Badegast nicht schwimmt sondern sich laufend über den Beckenboden bewegt. Sehen können wir, dass sich der Urlauber im Wasser vergleichsweise nur langsamer fortbewegen kann, als der Bademeister, der am Beckenrand entlang spaziert. Würde man diese triviale Beobachtung auf ihre Ursachen zurückführen wollen, so würden sich zwei Erklärungsmöglichkeiten anbieten.
Mit oder ohne Wasser
Erstens: man vernachlässigt für die Erklärung die Existenz des Wassers. Warum bewegt sich der Winterflüchtling im Pool bei gleicher Muskelkraft dann auf einmal langsamer fort als der Aufseher am Beckenrand? Einzige Erklärung: sein Gewicht – der Physiker würde präziser sagen: seine Masse – muss plötzlich zugenommen haben, so dass die Muskelkraft den Körper nur schleppender nach vorne bringen kann.
Zweite Erklärungsmöglichkeit: man bezieht das Wasser in die Erklärung mit ein. Dann lässt sich plausibel behaupten, dass der Urlauber gegen den Widerstand des Wassers anlaufen muss; das Wasser ‚bremst’ den Urlauber aus, so dass er bei derselben Kraftanstrengung nur langsamer vorankommt. Was wir bei der ersten Begründung noch Masse genannt haben, würden wir jetzt ‚Reibungswiderstand’ nennen.
Bezogen auf die Massenerzeugung der Elementarteilchen ähnelt diese kleine Episode aus den warmen Gefilden des sonnigen Südens dem Bild der Teilchenphysiker von der Natur. Der Higgs-Mechanismus behauptet die Existenz eines omnipräsenten Hintergrundfeldes. Wie das Wasser den Pool, füllt demnach das Higgs-Feld das Weltall homogen und isotrop aus.
Higgs-Äther entscheidend
Gäbe es kein Higgs-Hintergrundfeld (Äther) würden sich alle Teilchen mit Lichtgeschwindigkeit durchs Weltall bewegen – der Urlauber würde sich quasi in einem leeren Schwimmbecken befinden. Existiert nun der Higgs-Äther, so lässt sich die Trägheit der Elementarteilchen analog zur Spaniengeschichte auf zwei Arten erklären: Erstens: man ignoriert den Äther und behauptet alle Teilchen verfügen über Masse (wie es ja auch alltagssprachliche Praxis ist) oder zweitens, entsprechend dem Vorschlag von Peter Higgs: man berücksichtigt den Äther und beschreibt die Interaktion der Teilchen mit dem Hintergundfeld als Effekt von ‚Reibungskräften’.
Die effektive Masse der Elementarteilchen hängt dann von zwei Faktoren ab. Zum einen von der ‚Zähflüssigkeit des Äthers’ oder in der Sprache der Elementarteilchenphysik dem ‚Vakuumerwartungswert’ des Higgs-Feldes; zum anderen von dem ‚Reibungskoeffizenten’ der spezifischen Teilchensorte oder in der Sprache der Physik den ‚Kopplungskonstanten’ der Wechselwirkung zwischen Higgs-Feld und Teilchen. Ein Teilchen ist deshalb massiver als das andere oder übersetzt: der eine Urlauber liegt ‚schwerer’ im Wasser als der andere.
Ende gut, alles gut?
Man fragt sich nun: Was hat man durch die Einführung des Higgs-Feldes gewonnen? Die Antwort: Die Erklärungslücke des Standardmodells schließt sich; das Gesamtmodell behält seine Gültigkeit und Aussagekraft auch für Elementarteilchen, die über Masse verfügen. Der Higgs-Mechanismus stärkt somit die Prognosefähigkeit des Standardmodells. So erlaubt er im Prinzip beliebig genaue Vorhersagen für den Ausgang von Experimenten bei beliebig hohen Kollisionsenergien.
Einen Preis muss man jedoch bezahlen: die Selbstkonsistenz der Theorie verlangt nach einem weiteren Teilchen – dem ‚Higgs-Teilchen’, auch ‚Higgs-Boson’ genannt. Dieses von der Theorie postulierte Elementarteilchen tritt als energetische Anregung des Higgs-Feldes auf; in unserem Vergleich mit dem Swimmingpool entspräche es einem Strudel im Wasser. Das Higgs-Teilchen ist zum einen der notwendige Begleiter des omnipräsenten Äthers. Zum anderen hilft es aber auch die Theorie experimentell überprüfbar zu machen und sie notfalls zu falsifizieren. Der allgegenwärtige, homogene Äther lässt sich nämlich nicht direkt nachweisen.
Das Higgs-Teilchen bildet somit den letzten, noch fehlenden Baustein im strahlenden Theoriegebäude des Standardmodells der Teilchenphysik; was den Alchemisten des Mittelalters der ‚Stein der Weisen’ war, ist einigen Physikern der Gegenwart das Higgs-Teilchen. Einzelne, wie der Nobelpreisträger Leon Lederman, gehen sogar soweit, es als ‚Teilchen Gottes’ zu betiteln.
Stand: 13.04.2007