Der Jupitermond Europa ist eine bizarre Schönheit: Ein filigranes Netz kilometerlanger Furchen zerschneidet seine äußere Eisschicht wie die Risse in einem alten Ölgemälde. Doch diese Schönheit ist tödlich, denn mit minus 150 Grad Kälte, einer starren Eiskruste und fehlender Lufthülle hätte Leben hier kaum eine Chance.
{1l}
Verborgenes Habitat
Doch weiter unten, in zehn bis 15 Kilometern Tiefe, beginnt eine andere Welt. Denn hier erstreckt sich ein riesiger Ozean aus flüssigem Salzwasser, wahrscheinlich bis zu 100 Kilometer tief und einmal um den Mond reichend. Insgesamt könnte dieser Ozean doppelt so viel Wasser enthalten wie alle Meere der Erde zusammen genommen.
Hinweise auf diesen wässrigen Riesen lieferten wieder einmal die Magnetfeldmessungen der Galileo-Sonde. Denn sie detektierte auch um den Mond Europa herum verräterische Störungen im Jupitermagnetfeld – Störungen, wie sie typischerweise durch Bewegungen einer leitfähigen Flüssigkeit erzeugt werden. Da Europa im Gegensatz zu Io keine Gesteinskruste besitzt, sondern komplett von Eis bedeckt ist, sprach dies gegen einen Magmaozean – er wäre viel zu heiß und hätte das Eis längst schmelzen müssen. Anders dagegen ein subglaziales Meer aus flüssigem Salzwasser: Es wäre leitfähig und gleichzeitig gerade kühl genug, um die Eiskruste zu erhalten.
Von Gezeitenkräften durchgewalkt
Die große Frage aber war: Was hält diesen geheimnisvollen Ozean unter dem Eis flüssig? Eine Erklärung lag geradezu auf der Hand: die Gezeitenkräfte des Jupiter. Denn Europa umkreist seinen Planeten auf einer relativ exzentrischen, stark elliptischen Umlaufbahn. Dadurch schwankt die Anziehungskraft des Jupiter im Verlauf eines Umlaufs. Als Folge wird das Innere des Mondes mal stärker und mal weniger stark gestaucht und komprimiert.
Ist er dem Jupiter sehr nahe, heben sich Eis, Wasser und Gestein auf der ihm zugewandten Seite an, der gesamte Mond wird durch diese Kräfte leicht elliptisch verformt. Bewegt sich Europa dagegen vom Jupiter weg, nimmt er wieder eine annähernd kugelförmige Gestalt an. Diese ständigen Bewegungen erzeugen Reibungen im Untergrund, die Wärme erzeugen – Wärme, die ausreichen könnte, um Wasser unter der Eiskruste flüssig zu halten.
Nadja Podbregar
Stand: 21.02.2014