Die derzeitigen Computermodelle können die Beobachtungsergebnisse der kurzen Gamma Ray Bursts im Prinzip erklären. Dennoch ist vieles noch unklar: Welche Rolle spielen Magnetfelder bei der Erzeugung und Beschleunigung der Jets? Wie genau verschmelzen zwei Neutronensterne? Wann kollabiert das dabei entstehende Objekt zum Schwarzen Loch und wie viel Materie verbleibt danach für einige Zeit im Torus?
Letztere Fragen hängen von den nur unzureichend bekannten Eigenschaften dichter Neutronensternmaterie ab und entscheiden darüber, welche Doppelsternsysteme im letzten Augenblick ihrer Existenz Gammablitze aussenden können.
Grundsätzlich kommen auch nicht nur verschmelzende Neutronensterne als Ursache für die kurzen Gammablitze in Frage. Es können ebenso gut gemischte Systeme sein, in denen ein Schwarzes Loch und ein Neutronenstern sich umkreisen. Auch diese beiden Objekte verschmelzen letztlich miteinander und setzen explosionsartig Energie frei.
Jagd auf Geisterteilchen
Der beobachtbare Energieausstoß eines kurzen Gamma Ray Bursts ist gewaltig. Dennoch geht bis zu tausendfach mehr Energie in die Emission von unsichtbaren Teilchen: den Neutrinos. Sie entstehen auch bei normalen Supernovae in großer Zahl. Ihr erster und bislang einziger Nachweis beim Ausbruch der astronomisch gesehen nahen Supernova 1987A in der Großen Magellanschen Wolke galt damals als Sensation. Neue Anlagen sind im Bau, mit denen man hofft, zukünftig auch Neutrinos von Gamma Ray Bursts nachzuweisen. Allerdings erwartet man diese Teilchen bei extrem hohen Energien, wie sie Modelle für die Entstehung in den Jets vorhersagen. Neutrino-Teleskope haben mit bekannten Teleskopen nichts gemeinsam.
Neutrinofalle unter antarktischem Eis
Die derzeit größte Anlage namens ICECUBE entsteht in der Antarktis und soll speziell solch extrem hochenergetische Neutrinos nachweisen. Sie besteht im Prinzip aus vielen empfindlichen Lichtdetektoren, die in einem Bereich zwischen 1.400 und 2.400 Meter Tiefe im Eis versenkt werden. Diese elektronischen Augen überwachen das zwischen ihnen befi ndliche Eisvolumen. Stößt hierin ein aus dem Kosmos kommendes Neutrino mit einem Atomkern zusammen, entsteht ein geladenes Teilchen; das erzeugt einen kurzen Lichtblitz, den die Instrumente registrieren. Da sich auch die Herkunftsrichtung der Neutrinos ermitteln lässt, kann man auf diese Weise die verursachende Quelle am Himmel lokalisieren.
Wie Marek Kowalski von der Berliner Humboldt- Universität berichtete, sollten 10 bis 100 Sekunden nach dem beobachteten Gamma-Ausbruch Neutrinos die Erde erreichen. Dieser Neutrinoblitz ließe sich leicht der verursachenden Quelle zuordnen und würde den Astrophysikern einen völlig neuen Beobachtungszugang zu diesem Phänomen erschließen. Ein Teil des ICECUBE arbeitet bereits, der Endausbau soll im Jahr 2010 abgeschlossen sein. Dann überwachen 4.800 Sensoren ein Volumen von einem Kubikkilometer Eis.
Stand: 02.11.2007