Die besondere Dehnbarkeit der von den Max-Planck-Forschern entwickelten Legierung mit einem Mangan-Gehalt von 25 Prozent lässt sich mit dem doppelten Trip-Effekt indes nicht erklären. „Die Ursache liegt hier in kleinen Fehlern im Kristall – den sogenannten Stapelfehlern“, erläutert Frommeyer. Stapelfehler kann man sich als Verschiebung in regelmäßig aufeinandergestapelten Atomlagen vorstellen. An einem solchen Stapelfehler kann eine Kristallstruktur umklappen, so dass sich die Kristallebenen ab der Verschiebung genau in umgekehrter Reihenfolge stapeln. Beim Umklappen entsteht eine Spiegelebene, auf deren beiden Seiten die Kristallbereiche gespiegelt erscheinen. Experten sprechen von Zwillingsbildung. Und die macht sich von außen als extreme Dehnung bemerkbar.
Stapelfehler als Auslöser
Für die Werkstoffforscher bestand die Herausforderung darin, diesen Mechanismus zu erleichtern. Denn um einen Zwilling zu bilden, muss die sogenannte Stapelfehler-Energie aufgebracht werden – eine Art Zündtemperatur. Ist die erforderliche Stapelfehlerenergie zu hoch, bleibt die Zwillingsbildung aus. Wird der Stahl gedehnt, verschiebt sich der Kristall stattdessen an Versetzungen, ungeordneten mikroskopisch kleinen Kristallbaufehlern. So lässt sich der Stahl zwar ebenfalls verformen, die Dehnung aber ist wesentlich geringer, da sich die Versetzungen nach kurzer Zeit blockieren und gegenseitig an der Ausbreitung hindern. Der Werkstoff reißt.
Twip-Effekt
Wie sich zeigte, ist die Stapelfehler- Energie in der MnAlSi-25-3-3-Legierung so weit herabgesetzt, dass die Zwillingsbildung rasch einsetzt. Bereits bei Kräften um die 300 MegaPascal beginnt sich der Stahl plastisch zu verformen. Experten sprechen vom Twip-Effekt, kurz für twinning induced plasticity: durch Zwillingsbildung induzierte Plastizität.
Auch der Twip-Effekt spielt für Fahrzeugstähle eine große Rolle. Ein Auto besitzt – zum Beispiel im Motorraum – verschiedene Crashbauteile, die sich bei einem Aufprall zusammenfalten. Sie müssen viel Energie absorbieren. Und genau das können die Twip-Stähle durch ihre einzigartige Dehnungsreserve. Beinahe noch wichtiger, ist ihre Fähigkeit, Kräfte extrem schnell aufzunehmen. Selbst bei einem Aufprall mit hoher Geschwindigkeit setzt der Twip- Effekt ein. Die Bewegung von Versetzungen hingegen ist geschwindigkeitsabhängig. Je schockartiger der Aufprall, umso weniger setzen sie sich fort. Im Extremfall reißt der Stahl – das Energie-Aufnahmevermögen ist dahin.
Tim Schröder/ MaxPlanckForschung
Stand: 06.11.2009