Der Beginn einer Alzheimer-Erkrankung geht mit einem Mangel an der chemischen Substanz Acetylcholin einher. Jetzt haben Forscher entdeckt, dass dieser Botenstoff im Gehirn nicht wie bisher angenommen bei allen Nervenzellen für eine verstärkte Signalübertragung sorgt. Im Gegenteil: In der vierten Schicht der Großhirnrinde übernimmt Acetylcholin ausschließlich die Funktion, die Nervenzellen zu hemmen. Diese Ergebnisse wurden jetzt in der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht.
{1l}
Mit der Untersuchung der Acetylcholin-Wirkung sind Professor Dirk Feldmeyer vom Forschungszentrum Jülich und Emmanuel Eggermann von der Universität Freiburg nun in der Alzheimerforschung einen wichtigen Schritt vorangekommen. Die beiden Forscher konzentrierten ihre Studien an Rattenhirnen auf die vierte Zellenschicht der Großhirnrinde, weil diese eine Schlüsselrolle in der Signalverarbeitung von Sinneseindrücken einnimmt. Die erregenden Nervenzellen dieser Schicht (L4-Neuronen) bilden das „Eingangstor“ zum Großhirn für Signale, die aus dem Thalamus und über diesen vom Körper und den Sinnesorganen kommen.
Acetylcholin als Verstärker
Erregende Nervenzellen – 80 Prozent aller Neurone – können an andere Nervenzellen ein chemisches Signal weitergeben, das diese zu einer verstärkten Aktivität und somit wiederum zur Signalfortleitung veranlasst. Die L4-Neuronen geben ihre Signale jedoch nicht nur an andere Zellschichten der Großhirnrinde weiter, sondern in einer Rückkopplungsschleife auch an sich selbst zurück. Deshalb gingen viele Forscher bisher davon aus, dass die Hauptaufgabe der L4-Neuronen darin besteht, die aus dem Thalamus eingehenden Signale zu verstärken.
Unabhängig davon deuteten alle bisherigen Untersuchungen darauf hin, dass Acetylcholin im Großhirn für eine Verstärkung der Signalübertragung zwischen allen erregenden Nervenzellen sorgt. Denn im Wachzustand und insbesondere während Phasen erhöhter Aufmerksamkeit steigt die Acetylcholin-Konzentration im Gehirn an. Jedoch war bis jetzt die Wirkung von Acetylcholin speziell auf die L4-Neuronen nie untersucht worden.
…und als Hemmstoff
Eggermann und Feldmeyer haben dies nun getan und erhielten ein überraschendes Ergebnis: Bei den erregenden Neuronen der Schicht 4 des Großhirns wird die Signalübertragung durch Acetylcholin nicht verstärkt, sondern im Gegenteil gehemmt. Gleichzeitig konnten die beiden Forscher aber bestätigen, dass Acetylcholin die Signalübertragung zwischen den erregenden Nervenzellen der anderen Schichten verstärkt.
Demnach muss die Wirkung des Acetylcholins im Gehirn weitaus differenzierter betrachtet werden als bislang geschehen. Die Wissenschaftler schließen aus ihren Ergebnissen, dass die Hauptaufgabe der erregenden L4-Neuronen keine Verstärkung, sondern im Gegenteil eine Ausfilterung schwacher Thalamus-Signale ist. Die von den L4-Neuronen weitergeleiteten Signale werden aber anschließend ebenfalls durch die Wirkung des Acetylcholins verstärkt.
Rauschfilter gegen Störsignale
Die Forscher glauben, dass diese Anordnung den Zweck hat, das Signal-Rausch-Verhältnis zu verbessern – also dafür zu sorgen, dass die im Großhirn erwünschten Informationen nicht von Störsignalen überdeckt werden. In weiteren Versuchsreihen konnten Feldmeyer und Eggermann klären, warum Acetylcholin auf die L4-Zellen eine andere Wirkung hat als auf die Zellen der übrigen Schichten in der Großhirnrinde. In letzteren wird das Acetylcholin von dem Subtyp M1 des sogenannten Muskarinischen Acetylcholinrezeptors an die Zellen gebunden.
Durch Zugabe der Substanz Tropicamid, die auch in Augentropfen enthalten ist, konnten die beiden Forscher jedoch nachweisen, dass Acetylcholin bei den L4-Neuronen an den Subtyp M4 gebunden wird. Denn Tropicamid besetzt den M4-Rezeptor und blockiert so die Wirkung von Acetylcholin.
Die Entdeckung von Eggermann und Feldmeyer könnte möglicherweise einen neuen Ansatzpunkt zur Entwicklung von Therapien für Gehirnerkrankungen liefern, die mit einer Fehlfunktion in der Acetylcholin-Ausschüttung einhergehen – wie beispielsweise Alzheimer oder Schizophrenie. Denn entgegen der bisherigen Annahme sind verschiedene Rezeptoren beteiligt, die von neuen Therapien vielleicht gezielt beeinflusst werden könnten. Der Weg von der Grundlagenforschung bis zu einer möglichen Therapie ist jedoch weit.
(Forschungszentrum Jülich, 16.07.2009 – NPO)