Seepferdchen sind zwar langsam, aber erwischen problemlos selbst die schnellsten Kleinkrebse. Wie sie das schaffen, haben US-Forscher jetzt enthüllt: Ihre besondere Schnauzenform gibt den Seepferdchen Tarnung. Sie sorgt dafür, dass sich das Wasser bei ihrer Annäherung kaum bewegt und so auch keine verräterischen Druckschwankungen ihre Ankunft ankündigen.
Ruderfußkrebse sind wachsam: Nähert sich ihnen ein Fisch, bemerken sie dies oft schon im Voraus an seiner Bugwelle: Kleine Veränderungen im Wasserdruck, die anzeigen, dass sich etwas auf ihren Standort zu bewegt. Sie reagieren dann prompt: Innerhalb von nur zwei bis vier Millisekunden katapultieren sie sich mit kräftigen Schlägen ihrer beiden langen Ruderbeine aus der Gefahrenzone. Dabei können sie Geschwindigkeiten von mehr als 500 Körperlängen pro Sekunde erreichen, wie Brad Gemmell von der University of Texas in Port Aransas und seine Kollegen erklären. Das entspricht einem menschlichen Schwimmer, der mit 3.200 Kilometern pro Stunde durch das Wasser pflügen müsste.
Wer die Krebse dennoch erbeuten will, muss sich daher eine Strategie einfallen lassen, um dieses Vorwarnsystem der Ruderfußkrebse auszutricksen. Auch für Seepferdchen, eine zu den Seenadeln (Syngnathidae) gehörende Fischgruppe, sind Ruderfußkrebse ein Leibgericht. Das Problem dabei: Die schmalen, eher kurzflossigen Seepferdchen gehören nicht gerade zu den schnellen Schwimmern. Sie haben daher keine Chance, die schnellen Ruderfußkrebse bei der Flucht noch zu erwischen.
Anschleichen statt Verfolgen
Deshalb nutzen sie eine andere Strategie: Sie schleichen sich zunächst vorsichtig an und positionieren ihren Kopf schräg unterhalb des Krebses. Dann schnellen sie Kopf und Schnauze ruckartig hoch und saugen gleichzeitig den nun vor ihrer Schnauze schwimmenden Krebs ein. Das Ganze hat aber einen Haken: „Das Seepferdchen muss sehr nahe an die Beute herankommen, damit das funktioniert“, erklären die Forscher. Es darf erst zuschlagen, wenn der der Krebs nur noch weniger als zwei Millimeter von der Schnauze entfernt ist. In dieser geringen Entfernung aber müsste es sich normalerweise längst durch die Deformation des Wassers verraten haben.