Wissenschaftler haben im Tierversuch einen Mechanismus enträtselt, der für die Steuerung der inneren Uhr und das Schmerzempfinden bei Mäusen verantwortlich ist. Fehlt ein bestimmter Transkriptionsfaktor – ein Eiweiß, das das An- und Abschalten von Genen reguliert – während der Entwicklung des Mausembryos führt dies zu schwerwiegenden Fehlentwicklungen im Gehirn, die sich auch auf das zirkadiane System und Schmerzempfinden auswirken.
{1l}
Das An- und Abschalten von Genen wird durch Transkriptionsfaktoren reguliert, das heißt durch Proteine, die an ganz bestimmte Kontrollregionen von Genen binden. Die Rezeptoren von Sexualhormonen sind beispielsweise solche Transkriptionsfaktoren, die in hormon-abhängiger Weise zahlreiche Gene regulieren und so embryonale Entwicklungsvorgänge und physiologische Prozesse steuern. Diese Rezeptoren befinden sich im Zellkern und werden daher auch als nukleäre Rezeptoren bezeichnet. Neben nukleären Rezeptoren, die Hormone binden, gibt es die so genannten Orphan-Rezeptoren: „Waisen“, für die ein Hormon entweder noch nicht bekannt oder möglicherweise auch nicht vorhanden ist. Trotzdem regulieren diese Orphan-Rezeptoren eine Reihe von Entwicklungsprozessen beispielsweise im zentralen Nervensystem. Ear2, auch bekannt als Nr2f6, ist einer von ihnen und bildet zusammen mit den Transkriptionsfaktoren COUP-TFI und COUP-TFII eine Unterfamilie.
Funktion von Ear2 im Entwicklungsprozess des Maushirns entschlüsselt
Für Ear2 ist es den Max-Planck-Wissenschaftlern jetzt gelungen, eine lebensfähige Mausmutante zu erzeugen und die Funktion von Ear2 im Entwicklungsprozess des Maushirns aufzuzeigen. Das Ear2-Gen wurde mit molekulargenetischen Methoden in der Maus entfernt. An dieser Mausmutante, bezeichnet als Ear2-/-, konnten Forscher um Gregor Eichele, Direktor am Institut, zeigen, dass das Fehlen dieses Transkriptionsfaktors während der Embryogenese in der erwachsenen Maus zu erhöhtem Schmerzempfinden führt und zudem das so genannte zirkadiane System des Vorderhirns beeinträchtigt. Diese Defizienz in der erwachsenen Maus konnten die Forscher auf einen Defekt in einer kleinen, aber wichtigen Gehirnregion zurückführen.
Um die Funktion von Ear2 herauszufinden, ermittelten die Wissenschaftler, wo im Embryo das Ear2-Gen zuerst angeschaltet wird. Sie fanden heraus, dass dies in einer kleinen Gruppe von Neuronen der Fall ist, aus der sich dann später der so genannte Locus coeruleus (LC) bildet, ein Kern im Säugerhirn, der die Hauptquelle des Neurotransmitters Noradrenalin darstellt. Dieses Hirnareal besteht bei der erwachsenen Maus aus etwa 1.300 Neuronen, beim Menschen sind es sogar 3.000. Der LC sendet ein Netzwerk von Nervenfasern in fast alle Hirnregionen aus und reguliert primär über Noradrenalinausschüttung ein breites Spektrum von Verhaltens- und physiologischen Funktionen, wie das Erregungssystem, das Lernverhalten oder das Schmerzempfinden.
Es ist daher für die Forscher wichtig, die Entwicklung und Funktion des LC zu verstehen. Mit der Ear2-Mausmutante hatten die Wissenschaftler die Möglichkeit, hierüber mehr zu erfahren. Denn ohne das Ear2-Gen fehlten etwa 70 Prozent der Zellen des Locus coeruleus im Gehirn der erwachsenen Mäuse, wobei vor allem Neuronen im dorsalen Teil betroffen sind. Normalerweise werden von dort vor allem Noradrenalin-auschüttende Fasern in die Großhirnrinde – Kortex – geschickt. In der Ear2-Mutante ist die Anzahl der dorsalen Neuronen so reduziert, dass die kortikale Konzentration an ausgeschüttetem Noradrenalin viermal geringer ist als bei der normalen Maus. Die Wissenschaftler konnten zeigen, dass die verminderte Konzentration an Noradrenalin eine Beeinträchtigung der Funktionen der Großhirnrinde zur Folge hat.
„Feuern“ im zirkadianen Rhythmus
Die Forscher vermuteten, dass der Locus coeruleus an der Regulation des Erregungssystems und des Schlaf-Wach-Verhaltens beteiligt ist. Es ist nämlich bekannt, dass Neuronen dieses Kerns im zirkadianen Rhythmus „feuern“. Für die Hannoveraner Endokrinologen Anlass, die Ear2-Mutanten auf Defekte im zirkadianen Verhalten zu untersuchen, zumal dieses Gebiet seit Jahren zu den Schwerpunkten des Instituts zählt. Die Wissenschaftler konzentrierten sich dabei auf das Vorderhirn, da dieses von zahlreichen noradrenergen Nervenfasern erreicht wird, die vom dorsalen Teil des LC stammen.
Außerdem wurde für das Vorderhirn bereits ein eigener zirkadianer Schrittmacher charakterisiert, der weitgehend unabhängig vom zentralen Uhrwerk, dem Suprachiasmatischen Nukleus (SCN) funktioniert. Dieser Schrittmacher reguliert unter anderem die Anpassung der Aktivitätsphasen an veränderte Lichtzyklen und zeitliche Verschiebungen im Nahrungsangebot.
Uhrengen Period1 wird nicht mehr abgelesen
Mithilfe der In-situ-Hybridisierung konnte zunächst gezeigt werden, dass das Uhrengen Period1 im Vorderhirn der Ear2-/–Mutante nicht mehr in einem zirkadianen Rhythmus abgelesen wird. Bei der In-situ-Hybridisierung wird in einem hauchdünnen Gehirnschnitt die Boten-RNA eines Gens mit einer spezifischen Sonde angefärbt. Neben der Bestimmung der Genexpressionsmuster führten Henrik Oster und sein Zirkadian-Team Verhaltensversuche durch, um die phänotypischen Auswirkungen dieses Defekts im zirkadianen System des Kortex zu bestimmen.
Es wurde deutlich, dass die morphologische Veränderung des LC, bedingt durch das Fehlen von Ear2 in der Embryonalentwicklung, eine Verzögerung in der Anpassung an einen verschobenen Licht-Dunkel-Zyklus nach sich zieht und die Mutanten sich außerdem weniger effizient auf eingeschränkte Fütterungszeiten während ihrer eigentlichen Ruhephase einstellen können. Zudem konnte man zeigen, dass die Präzision der Aktivitätsrhythmik in Ear2-defizienten Tieren herabgesetzt war und diese unter Dauerlicht dazu neigen, ihre Rhythmik ganz zu verlieren. Die komplexen Verbindungen des LC zu anderen Zentren des zentralen Nervensystems machen diese Mutante zudem zu einem interessanten Modellsystem zur Untersuchung der zirkadianen Regulation zahlreicher anderer ZNS-Funktionen.
Wichtige Rolle beim Schmerzempfinden
Der Locus coeruleus spielt ebenfalls eine besondere Rolle im Prozess der Schmerzempfindung. Denn Noradrenalin, das im LC produziert wird, unterdrückt die Aktivität von schmerzvermittelnden Neuronen und hat so einen schmerzdämpfenden Effekt. Wenn nun, wie in der Ear2-Mutante, ein Teil des LC fehlt, sollte sich das auf die Schmerzempfindung der Mäuse auswirken. Versuche ergaben tatsächlich, dass die Schmerzempfindlichkeit der Mutanten höher war, was auf den eingeschränkten LC und die dadurch verursachte Verringerung des Noradrenalin-Gehalts im Rückenmark zurückgeführt werden konnte.
Für die Hannoveraner Endokrinologen eröffnete damit die Ear2-Mutante, der ein großer Teil des Locus coeruleus fehlt, die Möglichkeit, die Funktionen dieses Kerns, der für viele physiologische Prozesse und Verhaltensweisen bedeutsam ist, in seinem natürlichen Umfeld zu testen. „Es wäre nun interessant zu erforschen, ob die Mutante Auffälligkeiten auch noch in anderen Formen des Verhaltens zeigt, die mit dem LC in Zusammenhang gebracht werden“, sagt Gregor Eichele. Hierzu zählen auch das Angstverhalten, das Lernverhalten oder Gedächtnisleistungen. Die Wissenschaftler wollen deshalb zunächst herausfinden, wie genau das komplexe Netz neuronaler Fasern, das vom LC ausgesandt wird, in der Ear2-defizienten Tieren verändert ist.
(MPG, 13.04.2005 – DLO)