Biologie

Zelle: Umgebung wichtiger als Genom?

„Nanomolekulare Landschaft“ entscheidet über Form und Funktion

"Nanomolekulare Landschaft" © Fraunhofer IBMT

Die Umwelt prägt – nicht nur den Menschen, sondern auch seine Zellen. Die Oberfläche von Geweben und Nachbarzellen bestimmt in großem Maße die Richtung, in die sich eine noch undiffernezierte Zelle entwickelt. Diesen Effekt wollen jetzt Forscher für medizinische Zelltherapien und Biotechnologie nutzen.

Man hat sich lange nicht gesehen, und doch erkennen wir den alten Bekannten sofort wieder, wenn wir ihm auf der Straße begegnen. Was selbstverständlich erscheint, ist tatsächlich ein kleines Wunder, erklärt Prof. Günter Fuhr vom Fraunhofer-Institut für Biomedizinische Technik IBMT: „Hautzellen leben nur ein paar Monate, dann sterben sie ab und werden durch neue ersetzt. Wenn Sie Ihren Bekannten nach Jahren wieder sehen, ist in seinem Gesicht keine Zelle mehr die alte. Trotzdem erkennen Sie ihn. Er sieht – fast – aus wie früher. Alles in allem wird das Grundmuster erstaunlich stabil reproduziert.“

Oberfläche entscheidend

Diese präzise Reproduktion von Zellen lässt sich ausschließlich durch das Genom nicht erklären. „Wenn die Gene allein verantwortlich wären, würden Sie Ihren Bekannten schon nach einigen Monaten nicht wieder erkennen: Bei jeder Zellteilung treten Mutationen auf, die Informationsübertragung ist daher nicht ganz korrekt. Zu einem sehr präzisen Ergebnis führt hingegen die Wechselwirkung zwischen den Zelloberflächen. Sie sorgt dafür, dass die Zelle nahezu passgenau reproduziert wird“, so Prof. Günter Fuhr, Leiter des IBMT und Koordinator des neuen EU-Projekts CellPROM. Zusammen mit 27 Teams aus ganz Europa will der Fraunhofer-Wissenschaftler in den nächsten vier Jahren herausfinden, wie man die Wechselwirkung der Oberflächen nutzen kann, um die Eigenschaften von Zellen zu steuern.

Die Wechselwirkung zwischen Zelloberflächen regelt dabei nicht nur die Form, sondern auch die Funktion einer Zelle. Wenn beispielsweise eine neutrale, noch undifferenzierte Tochterstammzelle an bestimmten Zellen im Knochenmark vorbeidriftet, finden zwischen den Oberflächen makromolekulare Bindungen statt. Diese Reaktionen entscheiden darüber, ob sich die Stammzelle in ein rotes Blutkörperchen verwandelt, das Sauerstoff durch die Blutgefäße transportiert, in eine weiße Blutzelle, die für die Immunabwehr zuständig ist, oder in eine Makrophage, eine Fresszelle, die Viren und Bakterien den Garaus macht. „Die Entscheidung darüber, was für ein Zelltyp sich entwickelt, fällt an der Oberfläche, erst danach wird ein genetisches Programm angeschaltet“, resümiert Fuhr.

„Nanomolekulare Landschaften“ als Impulsgeber

Theoretisch lässt sich dieses molekulare Wechselspiel nutzen, um Zellen für therapeutische Zwecke zu gewinnen, beispielsweise zur Steigerung der Immunabwehr, zur Bekämpfung von Viren, oder als Ersatz für krebsgeschädigte Blutzellen. Bisher werden für die Zelltherapie adulte Stammzellen verwendet, die zum Beispiel dem Knochenmark des Patienten entnommen, vermehrt und anschließend wieder injiziert werden. Doch in den gläsernen Laborschalen finden diese Zellen keine biologisch stimulierenden Oberflächen. Sie sind daher auch nicht von vorneherein darauf programmiert, bestimmte Aufgaben wie Krebsbekämpfung oder Sauerstofftransport zu übernehmen.

Im Projekt CellPROM wollen die Forscher Oberflächen mit Makromolekülen belegen. Diese „Nanomolekularen Landschaften“ können Zellen in ihrer Entwicklung beeinflussen. Die Wortschöpfung „CellPROM“ verbindet den englischen Begriff „Cell“ für „Zelle“ und „EPROM“, die Bezeichnung für einen Computerchip, dessen Programm sich ändern lässt. „Unsere Vision ist eine individuelle Zelldifferenzierung“, sagt Fuhr. „Im Projekt wollen wir ein modulares Gerätesystem entwickeln, das kopiert, was im menschlichen Körper stattfindet: Dort differenzieren Stammzellen nach Bedarf in 220 unterschiedliche Zelltypen. Wenn es uns gelingt, diese Prozesse nachzuvollziehen, könnten wir gezielt Zellen für die Behandlung von Krebs, Immunschwäche, Autoimmunkrankheiten oder die Bluterkrankheit herstellen. Da bei der Zelltherapie nur körpereigene Stammzellen vermehrt und injiziert werden, gibt es auch keine immunologischen Probleme.“

Europäisches Netzwerk setzt auf Modulbauweise

Forschergruppen aus Deutschland, der Schweiz, Schweden, Spanien, Portugal, Belgien, Österreich, Frankreich, Italien und Litauen, Slowenien und Israel arbeiten an den technischen Details: Das Institut für Neue Materialien in Saarbrücken beispielsweise sucht nach geeigneten Nanopartikeln; das Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin erforscht verschiedene Nanostrukturen und wie man sterile Mikrosysteme aufbauen kann; am Pariser Institut Pasteur stehen Zellkulturen für die ersten Versuche bereit; die Forschungsabteilungen in verschiedenen Unternehmen entwickeln Geräte und automatische Fertigungssysteme.

In vier Jahren sollen die wesentlichen Module einer automatischen CellPROM-Maschine am IBMT getestet werden. Die Anlage inklusive aller Bildschirme, Mikroskope und Rechner für die Prozessüberwachung wird ein spezielles Labor füllen, während der eigentliche Programmiervorgang auf winzigem Raum stattfindet: Die Stammzellen durchlaufen feine Kanäle, wo sie auf makromolekulare Landschaften treffen. Durch die Wechselwirkung mit der Nanolandschaft verwandeln sie sich innerhalb einiger Stunden in spezialisierte Zellen, die auf ihre künftige Aufgabe bestens vorbereitet sind.

(Fraunhofer Gesellschaft, 27.04.2004 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Schriftzeichen

Ältestes Alphabet der Welt entdeckt?

Erstes Porträt eines extragalaktischen Sterns

Baby-Säbelzahnkatze im Permafrost entdeckt

Auch erwachsene Schimpansen spielen noch miteinander

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Das Geheimnis des Lebens - Genetik, Urknall, Evolution von Joachim Bublath

Top-Clicks der Woche