Geowissen

Berge bremsen Kontinentalverschiebung

Computersimulation der Erdmantelkonvektion liefert neue Erkenntnisse zur Plattentektonik

Für eine Computersimulation kombinierte separate Modelle für den Erdmantel und die Erdoberfläche zeigen die geografische Überlagerung der Anden und des absteigenden Mantelinneren zwischen der Nazca- und der Südamerikanischen Platte (blau). © Universität München

Die Erdkruste ist kein zusammenhängendes Gebilde, sondern gliedert sich in große Platten, die sich bewegen und dabei aufeinander treffen. Bislang ungeklärt war bisher jedoch, warum sich die Bewegungsrichtung und Geschwindigkeit einzelner Platten im Lauf der Erdgeschichte verändert haben. Ein internationales Wissenschaftlerteam ist jetzt der Lösung dieses Rätsels einen erhebliche Schritt näher gekommen.

Die Forscher konnten zeigen, dass sich die Annäherungsgeschwindigkeit der Südamerikanischen Platte und der westlich daran angrenzenden Nazca-Platte innerhalb der letzten zehn Millionen Jahre um etwa 30 Prozent verringert hat. Dies ist auf hohe Reibungskräfte zurückzuführen: Das an der Plattengrenze aufgefaltete Altiplano-Plateau übt aufgrund seines Gewichts genug Druck aus, um die Nazca-Platte zu verlangsamen, berichten die Wissenschaftler in der Fachzeitschrift "Geology".

"Die äußerste Schicht des Planeten, die Lithosphäre, ist fest und nur etwa 100 Kilometer dick", so Giampiero Iaffaldano aus dem Forschungsschwerpunkt Geophysik am Department für Geo- und Umweltwissenschaften der Ludwig-Maximilians-Universität (LMU) München. Er war zusammen mit Professor Hans-Peter Bunge, sowie Professor Timothy H. Dixon von der Rosenstiel School of Marine and Atmospheric Sciences in Miami, USA, an der Studie beteiligt. "Sie besteht aus mehreren Platten, auf die sich die Landmasse der Erde und die Ozeanböden verteilen." Diese Platten schwimmen in langsamer Bewegung auf einer Schicht zähflüssigen, unter hohem Druck stehenden Gesteins, die unter der Lithosphäre liegt.

"Echtzeitmessungen davon sind mittlerweile möglich und haben mehrere Zentimeter tektonischer Plattenbewegung angezeigt", berichtet Iaffaldano. "Die Energiequelle für die Aktivität an der Oberfläche sind so genannte Konvektionsbewegungen im zähflüssigen Inneren der Erde."

Die Bewegung der Platten macht deren Grenzen zu geologisch äußerst dynamischen Bereichen. Unter bestimmten Umständen kommt es beim Aufeinandertreffen zweier Platten zu einer Subduktion. Dann schiebt sich eine Platte unter die andere. Herrschen besonders komprimierende Bedingungen, kann sich dabei auch Gestein nach oben bewegen und dabei ganze Gebirge auffalten. Ein Beispiel dafür sind auch die Anden Südamerikas. Zwischen deren Hochgebirgsketten im Westen und Osten liegt der Altiplano, eine der ausgedehntesten Hochebenen der Welt.

Computersimulation der Erdmantelkonvektion entwickelt

Die Forscher entwickelten eine globale Computersimulation der Erdmantelkonvektion, die mit realistischen tektonischen Plattenmodellen an der Oberfläche gekoppelt ist. Sie nutzten zudem Daten des neuen "Globalen Positionierungssystems (GPS)". Damit gelang es ihnen erstmals, die Bewegungsänderung der Nazca-Platte vor Südamerika in den letzten zehn Millionen Jahren, also bis in die geologische Zeit des Miozäns zurückreichend, quantitativ zu erklären.

Sie konnten anhand von Zeitfenstern zeigen, dass sich die Subduktion der Nazca-Platte unter der Südamerikanischen Platte seitdem deutlich verlangsamt, und zwar um etwa 30 Prozent. Die Computersimulationen belegen aber auch, dass diese Veränderung durch hohe Reibungskräfte an der Plattengrenze verursacht wird. Verantwortlich dafür ist das Altiplano-Plateau in den Zentralanden in Bolivien und Peru, das vor allem seit dem späten Miozän aufgefaltet wird. Anders ausgedrückt: Der heute über 6000 Meter hohe Altiplano übt durch sein enormes Gewicht genug Druck aus, um die Bewegung der Nazca-Platte deutlich abzubremsen.

Mit dieser Studie konnten erstmals die Bewegungsänderung einer Platte erfolgreich "vorhergesagt" werden. Zwei Ergebnisse der Arbeit könnten nach Ansicht der Wissenschaftler besonders weit reichende Konsequenzen haben. So sind die oberen 30 Kilometer der Erdoberfläche, der erdbebenreiche Sprödbereich, wichtiger für die Steuerung der Plattentektonik als bislang angenommen. Zudem ergibt sich aus den Resultaten die Möglichkeit, dass das Erdklima direkten Einfluss auf die Plattentektonik haben könnte.

Denn die Auffaltung des Altiplano ist Folge der geringen Erosion, einhergehend mit dem dort vorherrschenden Wüstenklima. Auf der anderen Seite ist die Abbremsung der Nazca-Platte Folge der Auffaltung. Zusammen genommen ergibt das eine ganz besondere Wechselwirkung: Stark arides Klima könnte demnach in Regionen mit Gebirgsbildung die Bewegung tektonischer Platten verlangsamen. Diese grundlegenden Zusammenhänge müssen in Zukunft noch weiter gehend untersucht werden.

(idw – Universität München, 18.10.2006 – DLO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Schriftzeichen

Ältestes Alphabet der Welt entdeckt?

Erstes Porträt eines extragalaktischen Sterns

Baby-Säbelzahnkatze im Permafrost entdeckt

Auch erwachsene Schimpansen spielen noch miteinander

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Berge aus dem All - vom Deutschen Zentrum für Luft- und Raumfahrt (Hrsg).

Plattentektonik - Kontinent- verschiebung und Gebirgsbildung von Wolfgang Frisch und Martin Meschede

Der bewegte Planet - Eine geologische Reise um die Erde von Richard Fortey

Gebirge der Erde - Landschaft, Klima, Pflanzenwelt von Conradin A. Burga, Frank A. Klötzli und Georg Grabherr

Landschafts formen - Unsere Erde im Wandel von Harald Frater

Top-Clicks der Woche