Das menschliche Protein hGBP1 (humanes Guanylat-bindendes Protein 1) ist an der Abwehr von Viren und anderen Krankheitserregern beteiligt. Wie das Eiweiß auf molekularer Ebene genau „arbeitet“, war jedoch bislang unbekannt. Diesen Mechanismus haben jetzt Wissenschaftler im Rahmen einer neuen Studie entschlüsselt.
Danach besteht ein funktionelles Merkmal der Eiweißes hGBP1 in der katalytischen Spaltung von so genannten Cofaktor-Molekülen. Damit gehen die geordnete Zusammenlagerung und strukturelle Umwandlungen der Proteine einher, die für ihre biologische Wirkung von Bedeutung sind. Das von den Forschern erarbeitete Modell kann zum Verständnis der Funktionsweise einer Vielzahl ähnlicher Proteine dienen und Hinweise für die gezielte Behandlung verschiedener Krankheiten geben. Über ihre Ergebnisse berichten die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazin NATURE.
Funktionsweise molekularer Maschine aufgeklärt
Das Enzym hGBP1 gehört zu einer Klasse von Proteinen, von denen einige eine wichtige Funktion bei der Abwehr von Viren haben, während andere für das Abschnüren von Membranbläschen im Innern der Zelle verantwortlich sind – dies dient der Aufnahme von Substanzen in die Zelle und der Regulation von Rezeptoren an der Zelloberfläche. Von hGBP1 ist eine antivirale Wirkung und ein Einfluss auf die Bildung von Blutgefäßen (Angiogenese) bekannt.
Charakteristisch für das Protein ist die Bindung und katalytische Spaltung eines Cofaktors, der einerseits die Struktur und damit die biologische Aktivität des jeweiligen Proteins reguliert. Zum anderen wird durch diesen Spaltungsvorgang bei einigen Proteinen aber auch die Energie für größere, strukturelle Änderungen und damit für die mechanische Arbeit dieser kleinen, molekularen Maschinen geliefert.
„Wir haben herausgefunden, dass die hGBP1-Moleküle nach Bindung eines bestimmten Cofaktors miteinander kommunizieren und eine katalytische Spaltung des Cofaktors stimulieren“, erklärt der RUB-Chemiker Professor Christian Herrmann, der in Zusammenarbeit mit Forschern des Max-Planck-Instituts in Dortmund und einem französischen Labor an der Studie gearbeitet hat. Zum ersten Mal konnten die Forscher zeigen, wie Proteine durch Selbst-Assemblierung eine katalytische Wirkung hervorrufen, die auf ihr eigenes Verhalten und ihre Funktion zurückstrahlt.
Interdisziplinärer Erfolg
Das Forschungsergebnis ist das Resultat langjähriger Arbeiten zur Aufklärung eines Katalysemechanismus auf molekularer Ebene. Mit Hilfe vielfältiger experimenteller Methoden aus den Bereichen der biophysikalischen Chemie, der Biochemie und der Röntgen-Strukturanalyse ist es gelungen, die Funktionsweise eines Enzyms in molekularem Detail darzustellen. Durch einen experimentellen Trick konnten sogar sehr kurzlebige Zustände des Enzyms, die besonders kritisch für den katalytischen Vorgang sind, festgehalten und näher untersucht werden. Es ist gelungen, die Beobachtungen und Teilerkenntnisse, die sich mit den verschiedenen Methoden ergaben, zu einem stimmigen Modell zusammenzuführen. „Es hat sich einmal mehr gelohnt, die interdisziplinäre Arbeit zu suchen und eine wissenschaftliche Fragestellung von allen Seiten zu beleuchten“, so Herrmann.
Anwendung für Therapien
Die untersuchte Klasse von Proteinen hat außerordentlich vielseitige, biologische Funktionen. Gestörte (mutierte) Varianten dieser Proteine sind für zahlreiche Krankheiten verantwortlich, darunter auch Krebs. Untersuchungen der molekularen Mechanismen zeigen nicht nur, wie ein Protein funktioniert, sondern auch, wie und warum es bei einer bestimmten Störung nicht mehr funktioniert. Dies gibt der Forschung Ansatzpunkte für die Entwicklung von Wirkstoffen und zeigt Möglichkeiten auf, wie eine Krankheit gezielt zu bekämpfen ist. Das hGBP1 kann als Modell für viele andere Enzyme dieser Klasse dienen.
„Für unsere Promovierenden und Studierenden ist an unserer Arbeit besonders faszinierend, dass sie molekulare Grundlagen des Lebens erforschen, die eine deutlich erkennbare Relevanz auch für medizinische Anwendungen haben“, so Herrmann.
(idw – Ruhr-Universität Bochum, 03.03.2006 – DLO)