Astronomie

Galaxien entstaubt

Hälfte des Sternenlichts geht verloren

Blick auf die Kante: Bei der Galaxie NGC 891 beobachten die Astronomen den Licht-schluckenden Effekt des Staubs besonders deutlich. © C. Howk (JHU), B. Savage (U. Wisconsin), N. A. Sharp (NOAO)/ WIYN/ NOAO/ NSF

Die Hälfte allen Sternenlichts, das im Universum entsteht, wird direkt wieder verschluckt, von Staub und Gaswolken in den Galaxien. Ein neues, in der Fachzeitschrift „Astrophysical Journal“ veröffentlichtes Modell zeigt nun genau, wo und in welchem Maße die Strahlungsenergie „in Staub aufgeht“ berechnen – mit Konsequenzen für unser Bild von Geburt und Entwicklung der Sternsysteme.

Wer in einer klaren Nacht zum Himmel aufblickt, sieht Tausende von funkelnden Fusionsreaktoren: die Sterne. Auf das Universum hochgerechnet, erzeugen diese Gasbälle eine unvorstellbare Energie. In einem Würfel von lediglich einem Lichtjahr Kantenlänge sind das jährlich 40 Billiarden Kilowattstunden – etwa 300-mal soviel, wie die Menschheit im selben Zeitraum verbraucht. Doch auf der Erde nehmen wir nur etwa die Hälfte des Sternenlichts wahr, das im heutigen Universum erzeugt wird. Die andere Hälfte wird von Staubkörnchen verschluckt, die zwischen den Sternen im Weltraum schweben.

Galaxien bestehen aus Milliarden Sternen, die durch die Schwerkraft aneinander gebunden sind. Auch unsere Sonne ist einer von etwa 200 Milliarden Sternen innerhalb eines Systems namens Milchstraße, das einem gigantischen Feuerrad gleicht. Unter den Sternen gibt es kaum Einzelgänger, fast alle stecken sie in Galaxien. Will man den Energieausstoß im Universum bestimmen, muss man also die Strahlung der Galaxien untersuchen, einzelne Sterne lassen sich angesichts der „astronomischen“ Entfernungen ohnehin kaum beobachten.

Wie Rauch in der Atmosphäre

Nun enthalten Galaxien aber nicht nur Sterne, sondern auch Gas und Staub. Vor allem der Staub verschluckt einen Teil der Sternstrahlung, ähnlich wie etwa Rauch in unserer Atmosphäre die Sonnenstrahlung schwächt. Da keine Energie verloren gehen kann, erwärmen sich die interstellaren Staubkörnchen so weit, bis die von ihnen selbst abgegebene Wärmestrahlung im Gleichgewicht mit der aufgenommenen Strahlung steht. Dieses Strahlungsgleichgewicht gilt im Übrigen nicht nur für Staub zwischen den Sternen, sondern auch für jeden Himmelskörper. Auf der Erde etwa bestimmt es im Zusammenspiel mit dem atmosphärischen Treibhauseffekt die globale Temperatur.

Wie aber sind die Staubteilchen innerhalb von Galaxien verteilt? Dazu erarbeiteten Cristina Popescu von der University of Central Lancashire in Großbritannien und Richard Tuffs vom Heidelberger Max-Planck-Institut für Kernphysik ein Modell. Es beschreibt die Häufigkeit des Staubs in den einzelnen „Bausteinen“ einer Galaxie, also im Kern und in der Scheibe, sowie dessen Einfluss auf die Strahlung aus diesen Bereichen. Außerdem berücksichtigen die Rechnungen den Einfluss des Winkels, unter dem eine Galaxie von der Erde aus erscheint. Denn während wir manche Sternsysteme von der Kante sehen, blicken wir bei anderen senkrecht auf die Scheibe.

Um das Modell an der Natur zu testen, berechneten die Wissenschaftler die Energiedifferenz zwischen der tatsächlich gemessenen und der nach ihrem Modell korrigierten Strahlung der Sterne innerhalb von mehr als 10.000 näher gelegenen Galaxien. In der Tat entsprach diese Differenz genau jener Energie, die der erwärmte Staub in Form längerwelliger Strahlung aussendet.

Energie geht „in Staub auf“

„Die Gleichung ging perfekt auf und so verstehen wir jetzt den Energieausstoß der Galaxien und damit des Universums über einen großen Wellenlängenbereich“, erklärt Popescu. Und Tuffs ergänzt: „Die Ergebnisse zeigen sehr deutlich, dass interstellare Staubkörnchen einen erheblichen Effekt auf unsere Messungen des Energieausstoßes selbst nahe gelegener Galaxien zeitigen.“ So hat das Modell die Feuerprobe bestanden und erlaubt es den Astronomen, exakt zu berechnen, wie hoch der Anteil des vom Staub abgeblockten Sternlichts ist.

Die Forscher haben damit ein seit langem ungeklärtes Paradox gelöst: Die Energie aus der Wärmestrahlung des Staubs schien bisweilen den gesamten Energieausstoß der Sterne zu übersteigen. „Sie können aber nicht mehr Energie herausbekommen, als Sie hineinstecken. Somit wussten wir, dass da etwas gehörig nicht stimmte“, sagt Teamleiter Simon Driver von der britischen University of St. Andrews. In Wirklichkeit geht eben wesentlich mehr Energie der Sterne „in Staub auf“ als bisher vermutet: Die Energiebilanz des Universums erweist sich nunmehr als ausgeglichen.

Mehr Masse im Kern

„Die größten Auswirkungen haben unsere Ergebnisse auf die Messungen der zentralen Regionen von Galaxien, in denen sich supermassive schwarze Löcher verbergen“, sagt Alister Graham von der australischen Swinburne University of Technology. Denn die Galaxienkerne strahlen in Wahrheit bis zu fünfmal heller als beobachtet. Das bedeutet: Nach dem Modell von Popescu und Tuffs muss entsprechend mehr Sternmasse in den Kernen verborgen sein. Daraus ergeben sich auch Konsequenzen für unser Bild von Entstehung und Entwicklung der Sternsysteme.

In naher Zukunft wollen sich die Forscher vor allem einzelnen Galaxien widmen und dabei zwei neue Instrumente einsetzen, die demnächst in Betrieb gehen: Das VISTA-Teleskop in Chile und den Infrarotsatelliten Herschel, der Ende Juli starten soll: „VISTA erlaubt uns, geradewegs durch den Staub zu blicken, während Herschel direkt die Staubstrahlung nachweisen wird“, erläutert Jochen Liske von der Europäischen Südsternwarte.

(MPG, 16.05.2008 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Pluto und Charon

Machte ein „Kuss“ Pluto und Charon zum Paar?

Schon die Römer litten unter verschmutzter Luft

Ältestes Beispiel für Räuber-Beute-Co-Entwicklung

Filmdialoge werden immer „mörderischer“

Diaschauen zum Thema

Dossiers zum Thema

Big Eyes - Riesenteleskope und die letzten Rätsel im Kosmos

Bücher zum Thema

Sterngucker 3D - von Avanquest

Kosmologie für helle Köpfe - Die dunklen Seiten des Universums von Harald Lesch

Die ersten drei Minuten - Der Ursprung des Universums von Steven Weinberg, Friedrich Griese (Übersetzer)

Was zu entdecken bleibt - Über die Geheimnisse des Universums, den Ursprung des Lebens und die Zukunft der Menschheit von John R. Maddox

Das Erste Licht - Auf der Suche nach der Unendlichkeit von Richard Preston

Top-Clicks der Woche