Das europäische H.E.S.S.-Experiment aus Gammastrahlen-Teleskopen in Namibia hat zum ersten Mal hochenergetische Photonengammastrahlung von zwei weit entfernten Quasaren nachgewiesen. Dies zeigt, dass das All ist für Gammastrahlen durchlässiger ist als bisher angenommen. Damit muss nach Ansicht der Astronomen auch die Obergrenze des im All vorhandenen Lichts geringer sein als geschätzt. Über ihre Ergebnisse berichten die Forscher in der aktuellen Ausgabe der Zeitschrift Nature.
Alle Objekte im Universum senden Licht aus, das sich gleichmäßig im intergalaktischen Raum verteilt. Die direkte Bestimmung der Menge dieses Lichts ist schwierig, weil es von anderen Quellen überstrahlt wird, etwa unserem Sonnensystem und der Milchstraße. Um dem "fossilen Licht" auf die Spur zu kommen, nutzen die Forscher einen anderen Weg: Sie messen die Gammastrahlung, die von weit entfernten Objekten auf der Erde ankommt; sie gibt Aufschluss darüber, wie viel Licht sie auf ihrem Weg begegnet ist.
Überraschende Messungen gelungen
Eine Quelle für hochenergetische Gammastrahlung sind Quasare, kompakte, leuchtkräftige Objekte, deren Entfernung die Astrophysiker aus der Verschiebung ihrer optischen Emissionslinien hin zu längeren Wellenlängen, also in den "roten" Wellenlängenbereich berechnen: Diese Verschiebung wächst proportional zum Abstand. Die relativ hohen Werte der Rotverschiebung der beiden Quasare H 2356-309 (Rotverschiebung z = 0.165) und 1ES 1101-232 (Rotverschiebung z = 0.185) zeigen, dass sie sich weit entfernt am Rand unseres Universums befinden.
Dass die Gammastrahlung aus Quellen in dieser Entfernung noch messbar ist, ist für die Forscher überraschend: "Es ist eine Überraschung, dass diese Objekte mit dem H.E.S.S.-Experiment nachgewiesen wurden. Hochenergetische Photonen werden nämlich auf ihrem Weg durch den intergalaktischen Raum mit den dort vorhandenen Infrarot-Photonen von frühen Sternen und Galaxien durch Photon-Photon-Vernichtung absorbiert", erklärt Prof. Reinhard Schlickeiser von der Ruhr-Universität Bochum (RUB).
Bei diesen Zusammenstößen von hochenergetischen Photonen aus Quasaren mit Photonen aus anderen Quellen im intergalaktischen Raum bilden sich Photon-Photon-Paare – die Strahlung wird dabei vernichtet. Die Energie der in den beiden Quasaren erzeugten Photonen (Energien größer als 100 Giga- Elektronenvolt = 0,1 TeV) ist aber hoch genug, um bei Zusammenstößen mit den niederenergetischen (0,01 eV) Infrarot-Photonen Elektron- Positron-Paare zu produzieren, wie von Einstein vorhergesagt. "Die Energiedichte der diffusen extragalaktischen Infrarot- Hintergrundsstrahlung muss um mindestens einen Faktor 10 kleiner sein als bisher geschätzt", folgert Prof. Schlickeiser.
Wanken bisherige physikalische Gesetze?
"Noch sind unsere Ergebnisse mir der uns bekannten Physik im Einklang. Sollten wir mit dem H.E.S.S.-Experiment noch weiter entfernte kosmologische Objekte mit größerer Rotverschiebung nachweisen, wird es allerdings kritisch", stellt der Astrophysiker fest. "Dann müssen wir uns ernsthaft Gedanken über mögliche Modifizierungen unserer physikalischen Gesetze über Materie und Strahlung bei hohen Energien machen." Mögliche Modifizierungen könnten die Verletzung der Lorentz- Invarianz der speziellen Relativitätstheorie bei TeV-Energien oder einen nicht-kosmologischen Ursprung der Quasar-Rotverschiebung betreffen. Noch ist es verfrüht, solche radikalen Revisionen der physikalischen Gesetze einzufordern; die schiere Möglichkeit zeigt jedoch das enorme Potential der H.E.S.S.-Beobachtungen.
(Ruhr-Universität Bochum, 20.04.2006 – NPO)