Chemnitzer Physiker haben Elektronen bei ihrer Reise durch Moleküle beobachtet und dabei erstmals Elektronenzustände einzelner organischer Moleküle sichtbar gemacht.
Auf der Suche nach neuen Werkstoffen, Arzneimitteln oder elektronischen Anwendungen ist Physikern der TU Chemnitz in nanometerkleinen Welten ein wichtiger Durchbruch gelungen: Mit Hilfe eines Raster-Tunnel-Mikroskops haben Nachwuchswissenschaftler des Instituts für Analytik an Festkörperoberflächen erstmals Elektronen bei ihrer Reise durch ein organisches Molekül beobachtet. Damit ist es zugleich gelungen, die Struktur des Moleküls aus seinem Inneren heraus sichtbar zu machen.
Was bisher nur quantenmechanisch am Computer berechnet werden konnte, haben die Chemnitzer Physiker am Beispiel von Naphthalocyanin-Molekülen mit Erfolg experimentell unter die Lupe genommen. Und ihre Erkenntnis lautet: Von den jeweiligen Elektronenzuständen hängt ab, in welcher Form sich diese an vierblättrige Kleeblätter erinnernden Moleküle dem Beobachter präsentieren. So sind die zwei Nanometer, also nur zwei Millionstel Millimeter großen Moleküle entweder als kompakte vierzackige Sterne oder aber als bizarre Ringe auf einem Graphitkristall zu sehen.
„Tunneln die Elektronen in den energetisch tieferen Elektronenzustand des Moleküls, lässt sich eine Ringform beobachten, tunneln sie in den energetisch höheren Zustand, sehen wir eine kompakte Form“, erläutert Prof. Michael Hietschold von der TU Chemnitz.
Auf dem Weg zu neuartigen atomaren und molekularen Strukturen
„Die Ermittlung der Elektronenzustände ist entscheidend, um die chemischen Eigenschaften der Moleküle in Zukunft besser zu verstehen“, so Prof. Hietschold. Nach seiner Einschätzung sei damit ein wichtiger Schritt gemacht zum Aufbau völlig neuartiger atomarer und molekularer Strukturen. Dabei würden die Aufgabenstellungen der traditionellen Wissenschaftsgebiete Physik und Chemie nahezu vollständig miteinander verschmelzen.
Was heute noch Grundlagenforschung in unvorstellbar kleinen Experimentierfeldern ist, könnte bald für viele Lebensbereiche an praktischer Bedeutung gewinnen – etwa für winzigste Bauteile und Apparate oder für die Miniaturproduktion von Stoffen mit genau vorhersagbaren Eigenschaften. Prof. Hietschold: „Und weil dabei nur wenige Moleküle benötigt werden, wäre dies alles mit einem minimalen Aufwand an Energie und Rohstoffen realisierbar.“
Durchgeführt wurden die aktuellen Untersuchungen vom indischen Promotionsstudenten Thiruvacheril Gopakumar in dem an der TU Chemnitz eingerichteten Graduiertenkolleg „Akkumulation von einzelnen Molekülen zu Nanostrukturen“ der Deutschen Forschungsgemeinschaft.
(idw – Technische Universität Chemnitz, 14.10.2004 – DLO)