Physik

Erster Röntgenlaser auf Atom-Basis

Neue Technologie ermöglicht noch schärfere Bilder aus der Nanowelt

Illustration der Funktionsweise des atomaren Röntgenlasers: Der eintreffende Röntgenstrahl des Freie-Elektronen-Lasers (grün) schlägt ein inneres Elektron aus der Hülle des Neonatoms (Mitte), auf den frien Platz rückt ein äußeres Elektron nach und sendet dabei einen Röntgenpuls aus (gelb). © Greg Stewart/SLAC

Forscher haben den ersten Röntgenlaser konstruiert, bei dem Atome die energiereichen Strahlen abgeben. Ein Gas aus Neonatomen erzeugt dabei ultrakurze Röntgenblitze mit extrem geringer Streuung. Ein einzelner Blitz dauert nur rund fünf Femtosekunden – dies entspricht fünf Billiardstel Sekunden. Das Besondere an dem neuen Röntgenlaser ist die hohe Farbreinheit seines Röntgenlichts: Es besteht aus Strahlung in einem ganz engen Ausschnitt des Wellenlängen-Spektrums. Diese Reinheit ermögliche es, Nanostrukturen und Nanoprozesse genauer abzubilden zu als bisher möglich. Im Vergleich zu herkömmlichen Röntgenlasern sei der atomare Röntgenlaser rund 60 Mal schärfer, berichten die Forscher im Fachmagazin „Nature“.

Röntgenlaser ähneln herkömmlichen Lasern darin, dass sie Strahlen erzeugen, deren Wellen quasi im gleichen Takt schwingen. Während normale Laser jedoch Licht im sichtbaren oder infraroten Wellenbereich aussenden, erzeugen Röntgenlaser das sehr viel kurzwelligere und energiereichere Röntgenlicht. Je kürzer die Wellenlänge des emittierten Lichts ist, desto kleinere Objekte können damit noch trennscharf beobachtet und abgebildet werden.

Besonders scharfe Bilder aus der Nanowelt

Wie die Forscher berichten, erzeugt der neue atomare Röntgenlaser ein Licht mit der Wellenlänge von nur 1,46 Nanometern. Diese extrem kurze Wellenlänge reicht daher aus, um selbst kleine Moleküle und sogar Atome abbilden zu können. Das Licht des neuen Lasers schwanke dabei nur um ein Viertausendstel um seine Grundwellenlänge, schreiben Nina Rohringer vom Center for Free-Electron Laser Science (CFEL) in Hamburg und ihre US-amerikanischen Kollegen. Dadurch könne er besonders scharfe Bilder aus der Nanowelt liefern.

Weil der atomare Röntgenlaser zudem viele ultrakurze Röntgenpulse schnell hintereinander abfeuern kann, lassen sich mit ihm auch extrem schnelle Prozesse, beispielsweise bei chemischen Reaktionen, abfilmen. Die Röntgenblitze erzeugen dabei eine Serie von Schnappschüssen, die später wie ein Daumenkino zu einem Film zusammengesetzt werden können.

Neonatome unter Röntgenbeschuss

Für ihren atomaren Röntgenlaser schickten die Forscher Röntgenblitze eines sogenannten Freie-Elektronen-Lasers durch ein Neongas. Dieser Laser erzeugt die Röntgenstrahlung mit Hilfe von beschleunigten Elektronen. Der Röntgenstrahl frisst eine schmale Schneise durch das Gas und schlägt dabei jeweils ein Elektron aus den umliegenden Neonatomen. Dies führt dazu, dass die verbleibenden Elektronen in der Hülle der Neonatome ihre Position ändern. Sie strahlen dabei kurzzeitig Röntgenlicht aus.

Diese Blitze lösen eine Art Kettenreaktion aus und animieren auch die umliegende Atome, Röntgenlicht auszusenden. Diese überlagern sich und erzeugen so einen einzigen, ultrakurzen und sehr farbreinen Röntgenblitz. „Das erzeugte Röntgenlicht ist etwas schwächer als dasjenige des Freie-Elektronen-Lasers, hat jedoch eine stabilere Wellenlänge, ein glatteres Pulsprofil und eine kürzere Pulsdauer“, sagt Rohringer.

Gezielte Beobachtung von Prozessen

Weil die Röntgenblitze aus dem Freie-Elektronen-Laser und aus den Neonatomen unterschiedliche Wellenlängen haben, eignet sich dieser Aufbau gut für die gezielte Beobachtung von Prozessen: Mit einem Röntgenblitz könnte man einen Prozess starten – etwa eine chemische Reaktion oder eine Strukturumwandlung in einem Festkörper – und diesen Prozess dann mit dem Blitz des zweiten Röntgenlasers nach einer bestimmten Zeit ablichten. (Nature, 2012; doi:10.1038/nature.10721)

(Nature / DESY / dapd, 26.01.2012 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

Dossiers zum Thema

Nanoröhrchen - Kohlenstoffwinzlinge als Bausteine für Computer der Zukunft

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Nanotechnologie für Dummies - Spannende Entdeckungen aus dem Reich der Zwerge von Richard D. Booker und Earl Boysen

Wissen hoch 12 - Ergebnisse und Trends in Forschung und Technik von Harald Frater, Nadja Podbregar und Dieter Lohmann

Laser - von Fritz K. Kneubühl und Markus W. Sigrist

Das Wunder des Lichts - DVD der BBC

Faszination Nanotechnologie - von Uwe Hartmann

Top-Clicks der Woche