Vor kurzem ist es Wissenschaftlern mithilfe eines Spezial-Lasers gelungen, die Schwingungen von sichtbarem Licht erstmals direkt zu zählen. Eine neue Variante dieses Lasers im extrem ultravioletten Spektralbereich (XUV) haben jetzt Max-Planck-Forscher entwickelt und vorgestellt. Der neue Laser eröffnete unter anderem neue Perspektiven für hochgenaue Atomuhren.
Das Frequenzspektrum eines solchen modengekoppelten Lasers besteht aus einer langen gleichmäßigen Reihe von schmalen Linien, die man mit den Zinken eines Kamms vergleichen kann. Christoph Gohle und seine Kollegen in der Gruppe von Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik in Garching haben jetzt eine Lichtquelle vorgestellt, die einen solchen „Frequenzkamm“ im extrem ultravioletten Spektralbereich (XUV) zur Verfügung stellt.
Der Abstand zwischen den Linien dieses Kamms ist so groß, dass jede Linie für neue Präzisionsmessungen in dem bisher noch nicht erschlossenen Frequenzbereich benutzt werden kann. Die neue Lichtquelle ist nahezu punktförmig und eröffnet neue Möglichkeiten bei Anwendungen mit ultraviolettem Licht, von der Holographie, Mikroskopie und Nanolithographie bis hin zu Röntgen-Atomuhren. Das berichten die Forscher in der aktuellen Ausgabe der Zeitschrift Nature.
Schwingungen von Teilchen als Taktgeber
Optische Frequenzkämme, wie sie in den Labors am Max-Planck-Institut für Quantenoptik in den vergangenen Jahren in Garching entwickelt wurden, haben die optische Frequenzmessung revolutioniert. Sie ermöglichen es erstmals, zuverlässig arbeitende Atomuhren zu konstruieren, die als Taktgeber einen atomaren Übergang mit optischer Frequenz einsetzen. Damit rückt eine gegenüber den besten Cäsium-Atomuhren tausend Mal präzisere Zeitbestimmung in Reichweite.
Je schneller der Taktgeber einer Uhr schwingt, desto feiner ist die Unterteilung der Zeit und um so genauer kann eine Uhr arbeiten. In klassischen Pendeluhren schwingt der Taktgeber etwa ein Mal pro Sekunde, in Quarz-Armbanduhren etwa eine Million Mal, in modernen Cäsium-Atomuhren, die Grundlage der SI-Einheit Sekunde sind, zehn Milliarden Mal und in optischen Atomuhren noch hunderttausend Mal schneller. Eine weitere Steigerung der Taktgeberfrequenz wäre möglich, wenn man statt der Schwingung der Elektronenhülle die Schwingung eines Atomkerns nutzen könnte. Doch das scheiterte bisher, weil es nicht gelang, solche Schwingungen mit ausreichender Präzision zu detektieren und zu zählen.
Frequenzumwandlung erzeugt hochenergetische Strahlung
Bei der „nichtlinearen Konversion“ von elektromagnetischen Wellen entsteht in einem geeigneten Medium Licht mit einer Frequenz, die ein ganzzahliges Vielfaches der Frequenz des ursprünglichen Lichtes beträgt. Dies ermöglicht im Prinzip die Erzeugung von XUV- oder gar weicher Röntgenstrahlung aus sichtbarem oder nahinfrarotem Licht. Doch damit diese Konversion effizient abläuft, braucht man eine sehr hohe Lichtleistung, die durch Konzentration der mittlere Leistung aus einem Laser in wenige extrem kurze Lichtblitze (meistens einige Tausend pro Sekunde) erreicht wird.
Auf diese Weise kann die Leistung in einem Lichtblitz auf einige hundert Milliarden Watt gesteigert werden, ohne die im Mittel abgestrahlte Lichtleistung von einigen Watt zu erhöhen. Doch auch bei so hoher Leistung in einem Lichtblitz ist die Konversion in XUV-Licht ineffizient. Denn höchstens ein Hunderttausendstel der gesamten Leistung wird konvertiert und ein Großteil der eingestrahlten Leistung geht verloren.
“Spiegeltrick“ erhöht Effizienz
Mit der jetzt von den Max-Planck-Wissenschaftlern entwickelten Laserquelle ist man dem Ziel der präzisen Frequenzmessung im XUV (und eventuell einer Atomkernuhr) ein gutes Stück näher gekommen. Sie haben die auftretenden Schwierigkeiten mit einem Trick umgangen: Sie speichern die Pulse aus einem Laser mit einer hohen Wiederholrate zwischen zwei oder mehr Spiegeln derart, dass sich jeder neu eintreffende Puls zu dem in der Spiegelanordnung bereits umlaufenden Puls addiert und auf diese Weise die Leistung des umlaufenden Pulses viele hundert Mal größer werden kann.
Wird das nichtlineare Medium zur Frequenzkonversion – ein Stahl aus Xenon-Atomen – nun innerhalb dieser Anordnung platziert, so kann die Konversion ins XUV bei einer sehr hohen Wiederholfrequenz von über 100 Millionen Pulsen pro Sekunde stattfinden. Zudem geht das Licht, das nach einem Durchgang durch das Medium nicht konvertiert wurde, nicht verloren, sondern wird weiter zwischen den Spiegeln gespeichert und kann somit zu weiteren Durchläufen durch das Medium beitragen.
Eine solche XUV-Quelle ist nicht nur für die Grundlagenforschung und die hochpräzise Spektroskopie von Interesse. Die Einfachheit und Kompaktheit der Quelle und die hohe Wiederholrate stellen auch Anwendungen in der Halbleiterherstellung oder der hochdichten holographischen Datenspeicherung in Aussicht.
(MPG, 18.07.2005 – NPO)