Physik

Erstes Quantengas aus Molekülen

Vollständige Kontrolle gebundener Teilchen im Bose-Einstein-Kondensat gelungen

Herkömmliches Bose-Einstein-Kondensat aus Atomen © NIST

Ultrakalte Gase gelten als ideales Modellsystem für die Erforschung quantenphysikalischer Phänomene. Einem Physikerteam ist es nun erstmals gelungen, ein Quantengas nicht aus Einzelatomen, sondern aus chemisch gebundenen Molekülen zu erzeugen und die Teilchen quantenmechanisch vollständig zu kontrollieren. Die Forscher berichten darüber in der Fachzeitschrift Science.

Quantenphysik lässt sich experimentell am besten an ultrakalten Atomen und Molekülen erforschen. Bei Temperaturen knapp über dem absoluten Nullpunkt (-273,15 Grad) können die Teilchen mit entsprechendem Wissen und modernster Technik exakt kontrolliert werden. Werden Teilchen so weit gekühlt, dass die quantenmechanischen Wellenfunktionen der Teilchen zu überlappen beginnen, spricht man von einem Quantengas. Schwingen alle quantenmechanischen Wellenfunktionen der Einzelteilchen in perfektem Gleichtakt, entsteht ein Bose-Einstein-Kondensat (BEC).

Molekülgase bisher schwer zu kontrollieren

Solche Experimente mit Atomen zählen inzwischen zur wissenschaftlichen Routine. Moleküle hingegen entziehen sich aufgrund ihrer größeren Komplexität noch der vollständigen Kontrolle durch die Experimentalphysiker. „Bei ultrakalten Molekülen müssen wir wesentlich mehr Freiheitsgrade, wie die Rotation und den Schwingungszustand der Teilchen, kontrollieren“, erklärt Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck.

Gelingt diese Kontrolle, kann ein Bose-Einstein-Kondensat von Molekülen im Grundzustand erzeugt werden, in dem die Moleküle über die geringst mögliche innere Energie verfügen und gleichzeitig quantenmechanisch das exakt gleiche, wohldefinierte Verhalten zeigen. Diesem Ziel sind die Innsbrucker Forscher nun einen wesentlichen Schritt näher gerückt.

Quantengas mit Umwegen

Direktes Kühlen von Molekülen ist nicht effizient genug, um ein Bose-Einstein-Kondensat von Molekülen zu verwirklichen. Deshalb bedienen sich die Forscher eines Tricks: Sie kühlen zunächst Atome zur Bose-Einstein-Kondensation und erzeugen erst danach aus den Atomen Moleküle. In den bisherigen Experimenten konnten Wissenschaftler Quantengase allerdings nur mit sehr schwach gebundenen Atompaaren erzeugen. Die bisher möglichen Methoden reichten nicht aus, um die Moleküle in den stark gebundenen Grundzustand zu versetzen.

Johann Danzl im Labor © Institut für Experimentalphysik, Universität Innsbruck

Laser erzwingen tiefe Bindung

Nägerl und sein Team haben deshalb eine Idee von Theoretikern um Dieter Jaksch und Peter Zoller aufgegriffen. Mit zwei Lasern unterschiedlicher Wellenlänge befördern sie die schwach gebundenen Moleküle über den Umweg eines höheren Energieniveaus in die Nähe des Grundzustands. „Ausgangsmaterial ist ein Bose-Einstein-Kondensat aus Cäsiumatomen, das wir mit Hilfe einer Feshbachresonanz in ein Quantengas aus sehr schwach gebundenen Atompaaren überführen. Mit einer speziellen Technik (STIRAP – Stimulated Raman Adiabatic Passage) zwingen wir die Moleküle dann mit Hilfe eines 2-Photonen-Transfers in den tief gebundenen Molekülzustand“, erläutert Nägerl den Ablauf seines Experiments.

Die Teilchen werden dabei so stark aneinander gebunden, dass von chemisch stark gebundenen Molekülen gesprochen werden kann. „Wichtig ist, dass der Transferprozess kohärent abläuft, das heißt wir haben zu jedem Zeitpunkt die vollständige quantenmechanische Kontrolle über die Teilchen“, erklärt Johann Danzl, einer der Mitautoren der Arbeit.

Antworten auch auf grundlegende Fragen

Damit haben die Innsbrucker Forscher die schwierigste Hürde auf dem Weg zu einem Bose-Einstein-Kondensat von Molekülen im Grundzustand genommen – ein Ziel, das Wissenschaftler aus aller Welt derzeit fieberhaft anstreben. Das ultrakalte Gas aus sich exakt gleich verhaltenden Molekülen ist ein ideales Modellsystem für die grundlegende Erforschung von Molekülen.

In Zukunft könnte man damit extrem genaue Messungen durchführen und so zum Beispiel die Bindungsenergie der Molekülzustände über viele Größenordnungen exakter bestimmen als bisher. Auch ein altes Dogma der Physik könnte an ultrakalten Molekülen überprüft werden: Dass nämlich die Bausteine der Materie wie Protonen und Elektronen immer die gleiche Masse haben. Sollte sich das Verhältnis ihrer Massen mit der Zeit ändern, würde das die Grundfesten der modernen Physik erschüttern.

(Universität Innsbruck, 11.07.2008 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Einsteins Spuk - Teleportation und weitere Mysterien der Quantenphysik von Anton Zeilinger

Skurrile Quantenwelt - von Silvia Arroyo Camejo

Geheimnisse unseres Universums - Zeitreisen, Quantenwelt, Weltformel von Joachim Bublath

QED - Die seltsame Theorie des Lichts und der Materie von Richard P. Feynman

Das elegante Universum - Superstrings, verborgene Dimensionen und die Suche nach der Weltformel von Brian Greene

Top-Clicks der Woche