Technik

Forscher bauen Laser-Falle für Bakterien

Lichtschlauch macht kleinste Einzeller greif- und sichtbar

Bei der neuartigen optischen Pinzette der Freiburger Forscher kann ein kleines, spiralförmiges Bakterium mittels eines schnell bewegten fokussierten Laserstrahls festgehalten und detailliert abgebildet werden. Im Hintergrund ist eine Aufnahme mit einem herkömmlichen Mikroskop zu sehen, auf der das optisch gefangene Bakterium nur schemenhaft zu erkennen ist. © Universität Freiburg

Wissenschaftler haben eine neuartige optische Falle für Bakterien konstruiert: Der neuartige, auf Lasertechnik basierende Lichtschlauch kann selbst sehr kleine, längliche und sehr bewegliche Einzeller festhalten und abscannen. Bisher war es mit optischen Pinzetten nur möglich, Bakterien an einem Punkt ihres Körpers festzuhalten, ohne jedoch ihre Lage verändern zu können. Messung von kleinsten Ablenkungen der Lichtteilchen am gefangenen Bakterium erlaube es nun, seine Bewegungen in sehr schnellen, dreidimensionalen Bildfolgen aufzuzeichnen. Dies berichtet das Team in der aktuellen Online-Ausgabe von „Nature Photonics“.

In ihrer Studie untersuchten die Wissenschaftler vom Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg so genannte Spiroplasmen. Diese spiralförmigen Bakterien sind mit 200 Nanometern Durchmesser nur so dick wie circa 1.000 Atome. Da sie keine feste Zellwand besitzen, können sie sich rasant verformen und dadurch fortbewegen. Herkömmliche Lichtmikroskope können diese Bakterien aufgrund ihrer geringen Größe und schnellen Bewegungen nicht ausreichend gut abbilden. Mit der neu entwickelten optischen Falle konnten die Biophysiker das Bakterium mit Lichtkräften über seine ganze Länge festhalten und ausrichten.

Überlagerung verrät Position des Einzellers

Eine wichtige Eigenschaft von Laserlicht ist die Fähigkeit, dass sich überlagernde Lichtteilchen in ihrer Helligkeit erhöhen oder auslöschen können. Wenn Licht auf das Bakterium trifft und von ihm abgelenkt wird, überlagert es sich mit nicht abgelenktem Licht und wird dadurch verstärkt. Dadurch können dreidimensionale Aufnahmen nicht nur mit hohem Kontrast, sondern auch mit erhöhter Auflösung erzeugt werden. Somit ist es möglich, bis zu 1.000 dreidimensionale Aufnahmen in der Sekunde zu machen und die schnellen Bewegungen des Bakteriums detailliert zu erfassen, die die Forscher in einem Film festgehalten haben.

„Dies ist physikalisch faszinierend, da die Bewegungen der Bakterien mit extrem kleinen Energieveränderungen verbunden sind, die normalerweise kaum zu messen sind“, sagt Alexander Rohrbach vom Zentrum für Biologische Signalstudien der Universität Freiburg. Dies mache die Erfindung zu einem praktischen Werkzeug für die Grundlagenforschung. „Das biologisch Reizvolle sind die Signale, die das Bakterium durch seine Formveränderungen nach außen trägt, weil es damit Hinweise auf molekulare Vorgänge in seinem Inneren gibt – beispielsweise als Reaktion auf Stresszustände, in die das Bakterium versetzt wird.“

Mit dieser Methode wollen die Freiburger Wissenschaftler in Zukunft das Verhalten und die Zellmechanik von weiteren Bakterien untersuchen, die keine Zellwand besitzen und daher nur schwer mit Antibiotika bekämpft werden können. Diese Studien könnten somit helfen, bakterielle Infektionskrankheiten besser zu verstehen.

(Albert-Ludwigs-Universität, Freiburg im Breisgau, 05.10.2012 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Laser - Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst von Dieter Bäuerle

Das Wunder des Lichts - DVD der BBC

Donnerwetter - Physik - von Peter Häußler

Top-Clicks der Woche