Nach fast 150 Jahren aufgeklärt: Forscher haben erstmals genau gemessen, wie Licht seinen Impuls auf Materie überträgt. Dieser Strahlungsdruck treibt Kometenschweife von der Sonne weg, könnte aber künftig auch Weltraumsonden mit Lichtsegeln ermöglichen. Bisher war jedoch unklar, wie dabei die Energie vom elektromagnetischen Feld in Druck und elastische Wellen im Feststoff umgewandelt wird. Das haben Wissenschaftler nun experimentell beobachtet.
Die Idee, dass Licht einen Impuls besitzt, ist nicht neu: Schon der Astronom Johannes Kepler vermutete im Jahr 1619, dass der Druck des Sonnenlichts die Kometenschweife nach außen drückt. Erst 1873 aber lieferte der Physiker James Clerk Maxwell die Erklärung dazu: Er postulierte, dass dieser Strahlungsdruck durch den Impuls verursacht wird, den die elektromagnetischen Felder besitzen.
Umwandlung in mechanischen Impuls
Inzwischen weiß man, dass auftreffende Strahlung sogar mechanische Effekte auf Feststoffe hat: Die Umwandlung des elektromagnetischen Impulses erzeugt unter anderem elastische Wellen im Material. „Bis jetzt aber konnten wir nicht genau bestimmen, wie der Strahlungsimpuls in Kraft oder Bewegung umgewandelt wird“, erklärt Koautor Kenneth Chau von der University of Bristol. „Denn der Impuls des Lichts ist extrem klein und unsere Ausrüstung war nicht sensibel genug.“
Ein weiteres Problem: Wenn Strahlung auf eine feste Oberfläche trifft, wird ein Teil der Energie absorbiert und erzeugt im Material thermoelastische Wellen. Diese überdecken die impulstragenden elastischen Wellen und erschweren ihre Messung. Um ihren Störeinfluss zu minimieren, haben Chau und seine Kollegen nun einen Versuchsaufbau gewählt, der besonders wenig Strahlungsabsorption zulässt.