Klima

Licht lässt Partikel wachsen

Forscher entdecken neuen Mechanismus photokatalytischer Reaktionen

Im Labor des IRCELYON in Lyon setzten die Wissenschaftler das Luftgemisch abwechselnd Licht oder Dunkelheit aus und maßen die Größe der Partikel. Im Bild zu sehen ist die Glasröhre, in der sich die Reaktion abspielte, sowie die Beleuchtung, mit der Tag und Nacht simuliert wurden. © Eric Le Roux / Université Claude Bernard Lyon 1 (UCBL)/ IRCELYON

In einem Experiment hat ein internationales Forscherteam erstmals einen neuen Mechanismus nachgewiesen, bei dem Partikel durch Licht größer werden und der damit Einfluss auf die Wolkenbildung und das Klima hat. Diese photokatalytischen Reaktionen können zu einer schnellen Bindung von flüchtigen organischen Kohlenwasserstoffen (VOCs) auf der Oberfläche der Partikel führen. Unter solchen Bedingungen nehme die Größe und Masse der Partikel schnell zu, schreiben die Wissenschaftler im Fachblatt „Proceedings of the National Academy of Sciences“ (PNAS). Die Ergebnisse des Laborexperimentes könnten beobachtete Effekte erklären, die bisher in den globalen Klimamodellen noch nicht berücksichtigt sind.

Die traditionelle Vorstellung vom Wachstum der Partikel war bisher, dass bestimmte Gase in der Atmosphäre reagieren und dabei semiflüchtige Gase entstehen, die unter bestimmten Bedingungen auf der Oberfläche von Partikeln kondensieren. „Wir fanden heraus, dass Licht chemische Reaktionen auslösen kann zwischen gasförmigen Verbindungen und Chemikalien auf der Oberfläche von organischen Partikeln, die es nicht kondensierenden flüchtigen organischen Kohlenwasserstoffen erlauben, sich dort anzusiedeln und so die Partikel größer werden lassen“, berichtet Maria-Eugenia Monge vom IRCELYON und der Universität Lyon.

Zwei Spurengase als Testobjekte

Solche flüchtigen organischen Kohlenwasserstoffe (kurz VOCs) entstehen auch auf natürlichem Wege. Zum Beispiel entweicht Isopren als wichtiger Bestandteil ätherischer Öle aus Pflanzen in die Atmosphäre. Daher wird es vor allem über großen Wäldern wie dem tropischen Regenwald gebildet. Die Forscher benutzen daher in ihrem Experiment mit Limonen und Isopren zwei VOCs, die zu den weltweit häufigsten Spurengasen gehören, die die Vegetation der Erde in die Atmosphäre abgibt. Zusammen mit Partikeln setzten sie die Mischung anschließend abwechselnd Licht oder Dunkelheit aus und maßen die Größe der Partikel.

Dabei zeigte sich, dass die Partikel unter Lichteinfluss etwa von 50 auf 65 Nanometer gewachsen waren, was rund einer Verdoppelung ihres Gewichts entspricht. Ersetzten sie die Luft durch Stickstoff, dann war dieser Effekt kaum noch wahrnehmbar, was dafür spricht, dass Sauerstoff an der Reaktion beteiligt sein muss. Die Intensität des Lichts war dagegen weniger wichtig. Schon schwache UV-Strahlung reicht aus, um die chemischen Bindungen bei gelöstem organischen Material (DOM) aufzubrechen und freie Radikale zu bilden.

Im Labor des IRCELYON in Lyon setzten die Wissenschaftler das Luftgemisch abwechselnd Licht oder Dunkelheit aus und maßen die Größe der Partikel. Im Bild zu sehen ist die Glasröhre, in der sich die Reaktion abspielte, sowie die Beleuchtung, mit der Tag und Nacht simuliert wurden. © Eric Le Roux / Université Claude Bernard Lyon 1 (UCBL)/ IRCELYON

Winzige Aerosolpartikel in der Atmosphäre beeinflussen das Weltklima, da sie Sonnenlicht zurückstrahlen. Ebenso sind sie ein Faktor im globalen Wasserkreislauf, da sie die Wolkenbildung und damit die Niederschläge beeinflussen. Und als Feinstaub wirken sie sich auch auf die menschliche Gesundheit aus. Trotzdem gehören die Prozesse, die für Entstehen und Wachstum dieser Partikel verantwortlich sind, zu den am wenigsten verstandenen Gebieten der Atmosphärenwissenschaften. „Dieser neue und weitere bisher unbekannte Prozesse könnten die Ursache sein, dass die Atmosphärenchemie und -physik in ihren Modellen häufig die Aerosolkonzentrationen unterschätzt. Diese photounterstützten Prozesse sollten zunächst experimentell eingehender charakterisiert werden und künftig in Troposphären-Modelle mit einfließen“, empfiehlt Hartmut Herrmann vom deutschen Leibniz-Institut für Troposphärenforschung (IfT) in Leipzig. Dazu soll die Kooperation zwischen IfT und IRCELYON weiter fortgesetzt werden. (PNAS, 2012; doi: 10.1073/pnas.1120593109)

(Leibniz-Institut für Troposphärenforschung e. V., 24.05.2012 – NPO)

Keine Meldungen mehr verpassen – mit unserem wöchentlichen Newsletter.
Teilen:

In den Schlagzeilen

News des Tages

Skelett eines ungeborenee Kindes

So entstehen die Knochen des ungeborenen Kindes

Astronomen entdecken jüngsten Transit-Planet

Mehr Blackouts durch Wind- und Sonnenstrom?

Parkinson: Wenn mehr Dopamin mehr Zittern bedeutet

Diaschauen zum Thema

Dossiers zum Thema

Aerosole - Würzstoffe in der Klimaküche

Bücher zum Thema

QED - Die seltsame Theorie des Lichts und der Materie von Richard P. Feynman

Die Atmosphäre der Erde - Eine Einführung in die Meterologie von Helmut Kraus

Atmosphäre im Wandel - Die empfindliche Lufthülle unseres Planeten von Thomas E. Graedel, Paul J. Crutzen

Wetter & Klima - Das Spiel der Elemente - Atmosphärische Prozesse verstehen und deuten von Dieter Walch und Harald Frater

Top-Clicks der Woche