Laser statt Magnete: Mit einem nur tischgroßen Laser-Teilchenbeschleuniger haben US-Forscher erstmals Elektronen bis auf 4,25 Gigtaeletronenvolt beschleunigt – ein Weltrekord. Dies gelang durch ultrakurze Laserpulse, die in ein nur wenige Zentimeter langes Plasmaröhrchen geschossen wurden. Das Experiment belegt, dass Laser-Plasma-Beschleuniger künftig durchaus eine Alternative zu den kilometerlangen konventionellen Teilchenbeschleunigern sein können, betonen die Forscher im Fachmagazin „Physical Review Letters“.
Teilchenbeschleuniger sind normalerweise vor allem eines: riesig. Um Protonen und andere Teilchen auf nahezu Lichtgeschwindigkeit zu bringen, werden leistungsfähige Elektromagneten in kilometergroßen Beschleunigerringen eingesetzt. Diese Technik wird unter anderem beim weltgrößten Beschleuniger, dem Large Hadron Collider (LHC) am CERN, und für die Erzeugung der Synchrotronstrahlung bei Freie Elektronenlasern) eingesetzt.
Diese Teilchenbeschleuniger haben aber ihre Grenzen: Mehr als 100 Megaelektronenvolt (MeV) pro Meter Strecke können sie nicht erreichen, bevor das Material nachgibt. Deshalb müssen sie umso länger sein, je leistungsfähiger sie sein sollen. Doch es geht auch anders: mit Laserstrahlen.
Laserpulse erzeugen Sog im Plasma
Sogenannte Laser-Plasma-Beschleuniger nutzen keine Magnete, sondern kurze, extrem energiereiche Laserpulse, die in einen engen Kanal mit Plasma geschossen werden. Die Pulse lösen Elektronen aus dem Plasma und erzeugen gleichzeitig ein sogartiges elektrisches Feld, das die Teilchen hinter sich herzieht und dabei beschleunigt.