Der absolute Nullpunkt heißt so, weil eigentlich nichts kälter werden kann als er. Jetzt aber haben Physiker im Labor ein atomares Gas geschaffen, das negative Kelvin-Werte annehmen kann – und damit scheinbar noch unterhalb des Nullpunkts liegt. Klingt paradox? Ist es auch – jedenfalls wenn man die eigentlich unmöglichen Eigenschaften anschaut, die dieses Gas dann aufweist. Über ihr Expierment berichteten die Forscher im Fachmagazin „Science“.
Was für die meisten Menschen im Winter normal ist, war in der Physik bislang unmöglich: eine negative Temperatur. Auf der Celsius-Skala sind Minus-Grade keine große Sensation. Auf der absoluten Temperatur-Skala, die von Physikern verwendet wird und auch Kelvin-Skala heißt, kann der Nullpunkt jedoch nicht unterschritten werden – zumindest nicht in dem Sinne, dass etwas kälter als null Kelvin wird. Der physikalischen Bedeutung der Temperatur zufolge hat ein Gas eine umso niedrigere Temperatur, je langsamer die chaotische Bewegung seiner Teilchen ist. Bei null Kelvin (minus 273 Grad Celsius) kommen die Teilchen zum Stillstand und alle Unordnung verschwindet. Nichts kann also kälter sein als der absolute Nullpunkt der Kelvin-Skala.
Ein atomares Gas mit scheinbar unmöglichen Eigenschaften
Physiker der Ludwig-Maximilians-Universität München und des Max-Planck-Instituts für Quantenoptik in Garching haben nun im Labor ein atomares Gas geschaffen, das trotzdem negative Kelvin-Werte annehmen kann. Diese negativen absoluten Temperaturen haben einige scheinbar absurde Konsequenzen: Obwohl die Atome in dem Gas sich anziehen und damit ein negativer Druck herrscht, kollabiert das Gas nicht – ein Verhalten, das auch für die dunkle Energie in der Kosmologie postuliert wird. Mit Hilfe von negativen absoluten Temperaturen lassen sich auch vermeintlich unmögliche Wärmekraftmaschinen realisieren, etwa ein Motor, der mit einer thermodynamischen Effizienz von über 100 Prozent arbeitet.
Wer Wasser zum Kochen bringen will, muss ihm Energie zuführen. Während des Erhitzens bewegen sich die Wassermoleküle im Durchschnitt immer schneller; sie erhöhen ihre Bewegungsenergie. Dabei haben die einzelnen Moleküle sehr unterschiedliche Energie – von ganz langsam bis sehr schnell. Zustände niedriger Energie sind dabei wahrscheinlicher als solche mit hoher Energie – nur wenige Teilchen bewegen sich also sehr schnell. Diese Verteilung wird in der Physik Boltzmann-Verteilung genannt. „Die umgekehrte Boltzmann-Verteilung ist genau das, was eine negative absolute Temperatur ausmacht, und die haben wir erreicht“, sagt Ulrich Schneider. Das Gas sei dabei aber nicht kälter als null Kelvin, sondern heißer, wie der der Physiker erklärt: „Es ist sogar heißer als bei jeder beliebigen positiven Temperatur –die Temperaturskala hört bei unendlich einfach noch nicht auf, sondern springt zu negativen Werten.“
Rollende Kugeln in Hügellandschaft
Die Bedeutung einer negativen absoluten Temperatur lässt sich mit rollenden Kugeln in einer hügeligen Landschaft illustrieren, in der die Mulden für eine niedrige und die Erhebungen für eine hohe potenzielle Energie stehen. Haben Kugeln eine positive Temperatur und liegen in einem Tal bei minimaler potenzieller Energie, so ist dieser Zustand offensichtlich stabil – das ist die Natur, wie wir sie kennen. Je schneller sich die Kugeln bewegen, desto höher ist zudem ihre kinetische Energie: Geht man von positiven Temperaturen aus und erhöht die Gesamtenergie der Kugeln, erhitzt sie also, so verteilen sie sich in der Landschaft immer mehr auch auf Bereiche hoher Energie. Befinden sie sich allerdings auf einem Hügel bei maximaler potenzieller Energie, würden sie normalerweise hinunterrollen und dabei ihre potenzielle Energie in Bewegungsenergie umwandeln.
„Haben die Kugeln aber eine negative Temperatur, dann ist auch ihre Bewegungsenergie schon so groß, dass sie nicht weiter zunehmen kann“, erklärt Simon Braun. „Daher können die Kugeln nicht hinunterrollen und bleiben auf dem Hügel liegen. Die Energieschranke macht das System also stabil.“ Der Zustand negativer Temperatur ist in ihrem Experiment tatsächlich genauso stabil wie bei positiver Temperatur. „Wir haben auf diese Weise erstmals eine negative absolute Temperatur in einem System beweglicher Teilchen erreicht“, fügt Braun hinzu.
In Wasser und jedem anderen natürlichen System lässt sich diese Umkehrung der Boltzmann-Verteilung nicht erreichen, da das System dazu unendlich viel Energie aufnehmen müsste, was unmöglich ist. Besitzen die Teilchen nun jedoch eine obere Grenze für ihre Energie, wie zum Beispiel die Spitze eines Hügels in der Landschaft der potenziellen Energie, ändert sich die Situation völlig. Genau ein solches System mit einer oberen Energiegrenze haben die Forscher um Immanuel Bloch und Ulrich Schneider nun im Labor für ein Gas von Atomen verwirklicht und folgen dabei theoretischen Vorschlägen von Allard Mosk und Achim Rosch.
Atome im optischen Gitter gefangen
Die Wissenschaftler kühlen dazu rund hunderttausend Atome in einer Vakuumkammer auf eine Temperatur von wenigen Milliardstel Kelvin ab und fangen sie in optischen Fallen aus Laserstrahlen. Das umgebende Ultrahochvakuum sorgt dabei dafür, dass die Atome thermisch vollkommen von der Umwelt isoliert sind. Die Laserstrahlen bilden dabei ein sogenanntes optisches Gitter, in dem sich die Atome regelmäßig auf Gitterplätzen anordnen. Die Atome können sich in dem Gitter zwar durch den Tunneleffekt von Gitterplatz zu Gitterplatz bewegen, ihre Bewegungsenergie ist dabei jedoch nach oben beschränkt und hat damit die benötigte Grenze. Die Temperatur berücksichtigt allerdings nicht nur die Bewegungsenergie, sondern die gesamte Energie der Teilchen, in diesem System also auch Wechselwirkungs- und potenzielle Energie. Auch diesen setzt das System der Münchner und Garchinger Forscher eine obere Grenze. Die Physiker bringen dann die Atome an diese obere Grenze der Gesamtenergie – die Temperatur ist damit negativ, bei minus einigen Milliardstel Kelvin.
Ähnlich wie die Dunkle Materie
Die Arbeit der Münchner Physiker könnte auch für die Kosmologie interessant sein. Denn die negative Temperatur weist in ihrem thermodynamischen Verhalten Parallelen zur sogenannten dunklen Energie auf. Diese postulieren Kosmologen als jene rätselhafte Kraft, die den Kosmos dazu bringt, sich immer schneller auszudehnen, obwohl er sich aufgrund der anziehenden Gravitation der Materie im Universum eigentlich kontrahieren sollte.
In der Atomwolke des Münchner Labors gibt es ein ähnliches Phänomen: Das Experiment beruht unter anderem darauf, dass sich die Atome des Gases nicht abstoßen, wie in einem gewöhnlichen Gas, sondern anziehen. Das heißt, sie üben einen negativen und keinen positiven Druck aus; die Atomwolke will sich also zusammenziehen und sollte eigentlich kollabieren – genauso wie man das vom Universum unter dem Einfluss der Schwerkraft erwarten würde. Doch wegen ihrer negativen Temperatur tut sie dies gerade nicht. Sie bleibt ebenso vor dem Kollaps bewahrt wie das Universum. (Science, doi: 10.1126/science.1227831)
(Max-Planck Gesellschaft, 04.01.2013 – NPO)