Forschern der ETH Zürich ist es gelungen, ein eindimensionales Quantengas zu realisieren. In diesem Gas sind die Atome wie an einer Perlenkette aufgereiht und können sich nicht bewegen. Mit diesem Experiment beleuchten die Wissenschaftler erstmals die außergewöhnliche Rolle der Dimensionalität in der Quantenwelt.
Mehrere internationale Forschungsgruppen sind im Moment daran, mit ultrakalten Atomen in völlig neue physikalische Bereiche vorzudringen. Hierfür werden die kalten Gase in das periodische Interferenzmuster von Laserstrahlen geladen. Es entstehen so genannte optische Gitter, in denen die kalten Atome im luftleeren Raum nur durch die Kraftwirkung von Laserlicht gehalten werden. In optischen Gittern spielt die Berührung der Atome untereinander eine entscheidende Rolle und führt zu erstaunlichen Quantenphänomenen, die jetzt experimentell zugänglich geworden sind. In einem optischen Gitter ist eine einzigartige Kontrolle über Position und Bewegung der Atome möglich, sodass Hoffnung besteht, komplexe Quantensysteme mit optischen Gittern zu simulieren. Solche Quantensimulatoren könnten in Zukunft Antworten auf bislang ungeklärte Fragen in der Physik geben.
Quantenwelt in einer Dimension
Einem Forscherteam an der ETH Zürich ist es nun in einem Experiment mit ultrakalten Atomen gelungen, die aussergewöhnliche Rolle zu beleuchten, welche die Dimensionalität für Quantensysteme spielt. Hierbei konnten fundamentale Vorhersagen bestätigt werden. Die ausgeklügelte Anordnung von Laserstrahlen im ETH-Experiment erlaubt es, ein optisches Gitter zu erzeugen, in dem sich die Atome nur entlang einer Linie bewegen können. Ähnlich wie Autos in einem Tunnel können sich die Atome darin nur vorwärts oder rückwärts bewegen; eine Bewegung zur Seite oder nach oben und unten ist nicht möglich. Im Gegensatz zu Autos befinden sich die ultrakalten Atome in einem superflüssigen Zustand und können sich reibungsfrei bewegen.
Durch Einstrahlen eines zusätzlichen Lasers wurden entlang der Bewegungsrichtung kleine Barrieren für die Atome erzeugt. Mit zunehmender Höhe der regelmässig angeordneten Barrieren verlangsamt sich die Bewegung der Atome, und die Berührung der Atome, bzw. deren Stösse untereinander, spielen eine immer grössere Rolle. Aufgrund der Stösse kommt schliesslich der Punkt, an dem die Atome plötzlich an einer festen Position eingefroren werden. Dieser isolierende Zustand lässt keine reibungsfreie Bewegung der Atome zu und zeichnet sich dadurch aus, dass sich genau ein oder genau zwei Atome zwischen zwei Barrieren befinden.