Fehler als Speicher: In Diamant eingeschlossene Stickstoffatome lassen sich als Speichereinheiten für Quantencomputer nutzen. Solche Fehlstellen ließen sich bisher jedoch nur mit Hilfe von Lasern manipulieren und waren nicht elektronisch lesbar. Ein internationales Forscherteam hat dieses Problem nun überwunden: Mit Hilfe des Nanomaterials Graphen lassen sich die vielversprechenden Speicher auch elektronisch auslesen, berichten die Wissenschaftler im Magazin „Nature Nanotechnology“. Extrem hohe Taktraten für zukünftige Computer rücken damit einen großen Schritt näher.
Ein idealer Diamant besteht aus reinem Kohlenstoff – in der Natur sind darin jedoch auch immer kleine Verunreinigungen zu finden. Viele solcher Fehler geben Diamanten eine besondere Farbe. Am besten untersucht sind sogenannte Doppelfehlstellen im Kristallgitter des Diamanten, bei denen ein Kohlenstoff-Atom durch Stickstoff ersetzt ist. Außerdem befindet sich neben dem Stickstoff eine Leerstelle, eine Art Loch im Kristallgitter. Solche Doppelfehlstellen lassen sich als hochempfindliche Sensoren einsetzten, und auch als Informationsspeicher für Quantencomputer sind sie nutzbar. Bisher gab es allerdings keinen Weg, die optisch kodierte Information elektrisch wieder auszulesen.
Stickstoff-Fehler und zwei Kohlenstoff-Formen
Ein Team unter Leitung Alexander Holleitner von der Technischen Universität München hat nun eine solche Auslesemöglichkeit geschaffen. Die Wissenschaftler nutzen dazu neben dem Diamant eine weitere Form des Kohlenstoffs: Graphen. Denn wie sie feststellten, lässt sich Energie von den Fehlstellen im Diamant direkt auf eine unmittelbar benachbarte Schicht aus dem zweidimensionalen Material Graphen übertragen.
Dazu bestrahlten die Forscher Diamanten mit einer Größe von rund 100 Nanometern mit Laser-Licht. Dabei hebt ein Licht-Photon ein Elektron im Zentrum einer Stickstoff-Fehlstelle von seinem Normalzustand in einen angeregten Zustand. Dabei trennt sich die Ladung des Elektrons vorübergehend von dem hinterlassenen Loch im Gitter. „Das System aus dem angeregten Elektron und dem verlassenen Grundzustand kann man als Dipol auffassen“, erklärt Holleitner. „Dieser Dipol erzeugt in der nahegelegenen Graphenschicht wieder einen Dipol aus einem Elektron und einer Leerstelle.“